SimpleOS

LXR

Navigation



Site hébergé par : enix

The LXR Cross Referencer for SOS

source navigation ]
diff markup ]
identifier search ]
general search ]
 
 
Article:1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] [ 6.5 ] [ 7 ] [ 7.5 ] [ 8 ] [ 9 ] [ 9.5 ]

001 /* Copyright (C) 2000 Thomas Petazzoni
002    Copyright (C) 2004 David Decotigny
003 
004    This program is free software; you can redistribute it and/or
005    modify it under the terms of the GNU General Public License
006    as published by the Free Software Foundation; either version 2
007    of the License, or (at your option) any later version.
008    
009    This program is distributed in the hope that it will be useful,
010    but WITHOUT ANY WARRANTY; without even the implied warranty of
011    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
012    GNU General Public License for more details.
013    
014    You should have received a copy of the GNU General Public License
015    along with this program; if not, write to the Free Software
016    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
017    USA. 
018 */
019 
020 #include <sos/list.h>
021 #include <sos/physmem.h>
022 #include <hwcore/paging.h>
023 #include <sos/assert.h>
024 
025 #include "kmem_vmm.h"
026 
027 /** The structure of a range of kernel-space virtual addresses */
028 struct sos_kmem_range
029 {
030   sos_vaddr_t base_vaddr;
031   sos_count_t nb_pages;
032 
033   /* The slab owning this range, or NULL */
034   struct sos_kslab *slab;
035 
036   struct sos_kmem_range *prev, *next;
037 };
038 const int sizeof_struct_sos_kmem_range = sizeof(struct sos_kmem_range);
039 
040 /** The ranges are SORTED in (strictly) ascending base addresses */
041 static struct sos_kmem_range *kmem_free_range_list, *kmem_used_range_list;
042 
043 /** The slab cache for the kmem ranges */
044 static struct sos_kslab_cache *kmem_range_cache;
045 
046 
047 
048 /** Helper function to get the closest preceding or containing
049     range for the given virtual address */
050 static struct sos_kmem_range *
051 get_closest_preceding_kmem_range(struct sos_kmem_range *the_list,
052                                  sos_vaddr_t vaddr)
053 {
054   int nb_elements;
055   struct sos_kmem_range *a_range, *ret_range;
056 
057   /* kmem_range list is kept SORTED, so we exit as soon as vaddr >= a
058      range base address */
059   ret_range = NULL;
060   list_foreach(the_list, a_range, nb_elements)
061     {
062       if (vaddr < a_range->base_vaddr)
063         return ret_range;
064       ret_range = a_range;
065     }
066 
067   /* This will always be the LAST range in the kmem area */
068   return ret_range;
069 }
070 
071 
072 /**
073  * Helper function to lookup a free range large enough to hold nb_pages
074  * pages (first fit)
075  */
076 static struct sos_kmem_range *find_suitable_free_range(sos_count_t nb_pages)
077 {
078   int nb_elements;
079   struct sos_kmem_range *r;
080 
081   list_foreach(kmem_free_range_list, r, nb_elements)
082   {
083     if (r->nb_pages >= nb_pages)
084       return r;
085   }
086 
087   return NULL;
088 }
089 
090 
091 /**
092  * Helper function to add a_range in the_list, in strictly ascending order.
093  *
094  * @return The (possibly) new head of the_list
095  */
096 static struct sos_kmem_range *insert_range(struct sos_kmem_range *the_list,
097                                            struct sos_kmem_range *a_range)
098 {
099   struct sos_kmem_range *prec_used;
100 
101   /** Look for any preceding range */
102   prec_used = get_closest_preceding_kmem_range(the_list,
103                                                a_range->base_vaddr);
104   /** insert a_range /after/ this prec_used */
105   if (prec_used != NULL)
106     list_insert_after(the_list, prec_used, a_range);
107   else /* Insert at the beginning of the list */
108     list_add_head(the_list, a_range);
109 
110   return the_list;
111 }
112 
113 
114 /**
115  * Helper function to retrieve the range owning the given vaddr, by
116  * scanning the physical memory first if vaddr is mapped in RAM
117  */
118 static struct sos_kmem_range *lookup_range(sos_vaddr_t vaddr)
119 {
120   struct sos_kmem_range *range;
121 
122   /* First: try to retrieve the physical page mapped at this address */
123   sos_paddr_t ppage_paddr = SOS_PAGE_ALIGN_INF(sos_paging_get_paddr(vaddr));
124   if (ppage_paddr)
125     {
126       range = sos_physmem_get_kmem_range(ppage_paddr);
127 
128       /* If a page is mapped at this address, it is EXPECTED that it
129          is really associated with a range */
130       SOS_ASSERT_FATAL(range != NULL);
131     }
132 
133   /* Otherwise scan the list of used ranges, looking for the range
134      owning the address */
135   else
136     {
137       range = get_closest_preceding_kmem_range(kmem_used_range_list,
138                                                vaddr);
139       /* Not found */
140       if (! range)
141         return NULL;
142 
143       /* vaddr not covered by this range */
144       if ( (vaddr < range->base_vaddr)
145            || (vaddr >= (range->base_vaddr + range->nb_pages*SOS_PAGE_SIZE)) )
146         return NULL;
147     }
148 
149   return range;
150 }
151 
152 
153 /**
154  * Helper function for sos_kmem_vmm_setup() to initialize a new range
155  * that maps a given area as free or as already used.
156  * This function either succeeds or halts the whole system.
157  */
158 static struct sos_kmem_range *
159 create_range(sos_bool_t  is_free,
160              sos_vaddr_t base_vaddr,
161              sos_vaddr_t top_vaddr,
162              struct sos_kslab *associated_slab)
163 {
164   struct sos_kmem_range *range;
165 
166   SOS_ASSERT_FATAL(SOS_IS_PAGE_ALIGNED(base_vaddr));
167   SOS_ASSERT_FATAL(SOS_IS_PAGE_ALIGNED(top_vaddr));
168 
169   if ((top_vaddr - base_vaddr) < SOS_PAGE_SIZE)
170     return NULL;
171 
172   range = (struct sos_kmem_range*)sos_kmem_cache_alloc(kmem_range_cache,
173                                                        SOS_KSLAB_ALLOC_ATOMIC);
174   SOS_ASSERT_FATAL(range != NULL);
175 
176   range->base_vaddr = base_vaddr;
177   range->nb_pages   = (top_vaddr - base_vaddr) / SOS_PAGE_SIZE;
178 
179   if (is_free)
180     {
181       list_add_tail(kmem_free_range_list,
182                     range);
183     }
184   else
185     {
186       sos_vaddr_t vaddr;
187       range->slab = associated_slab;
188       list_add_tail(kmem_used_range_list,
189                     range);
190 
191       /* Ok, set the range owner for the pages in this page */
192       for (vaddr = base_vaddr ;
193            vaddr < top_vaddr ;
194            vaddr += SOS_PAGE_SIZE)
195       {
196         sos_paddr_t ppage_paddr = sos_paging_get_paddr(vaddr);
197         SOS_ASSERT_FATAL((void*)ppage_paddr != NULL);
198         sos_physmem_set_kmem_range(ppage_paddr, range);
199       }
200     }
201 
202   return range;
203 }
204 
205 
206 sos_ret_t
207 sos_kmem_vmm_subsystem_setup(sos_vaddr_t kernel_core_base,
208                              sos_vaddr_t kernel_core_top,
209                              sos_vaddr_t bootstrap_stack_bottom_vaddr,
210                              sos_vaddr_t bootstrap_stack_top_vaddr)
211 {
212   struct sos_kslab *first_struct_slab_of_caches,
213     *first_struct_slab_of_ranges;
214   sos_vaddr_t first_slab_of_caches_base,
215     first_slab_of_caches_nb_pages,
216     first_slab_of_ranges_base,
217     first_slab_of_ranges_nb_pages;
218   struct sos_kmem_range *first_range_of_caches,
219     *first_range_of_ranges;
220 
221   list_init(kmem_free_range_list);
222   list_init(kmem_used_range_list);
223 
224   kmem_range_cache
225     = sos_kmem_cache_subsystem_setup_prepare(kernel_core_base,
226                                              kernel_core_top,
227                                              sizeof(struct sos_kmem_range),
228                                              & first_struct_slab_of_caches,
229                                              & first_slab_of_caches_base,
230                                              & first_slab_of_caches_nb_pages,
231                                              & first_struct_slab_of_ranges,
232                                              & first_slab_of_ranges_base,
233                                              & first_slab_of_ranges_nb_pages);
234   SOS_ASSERT_FATAL(kmem_range_cache != NULL);
235 
236   /* Mark virtual addresses 16kB - Video as FREE */
237   create_range(TRUE,
238                SOS_KMEM_VMM_BASE,
239                SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO_START),
240                NULL);
241   
242   /* Mark virtual addresses in Video hardware mapping as NOT FREE */
243   create_range(FALSE,
244                SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO_START),
245                SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO_END),
246                NULL);
247   
248   /* Mark virtual addresses Video - Kernel as FREE */
249   create_range(TRUE,
250                SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO_END),
251                SOS_PAGE_ALIGN_INF(kernel_core_base),
252                NULL);
253   
254   /* Mark virtual addresses in Kernel code/data up to the bootstrap stack
255      as NOT FREE */
256   create_range(FALSE,
257                SOS_PAGE_ALIGN_INF(kernel_core_base),
258                bootstrap_stack_bottom_vaddr,
259                NULL);
260 
261   /* Mark virtual addresses in the bootstrap stack as NOT FREE too,
262      but in another vmm region in order to be un-allocated later */
263   create_range(FALSE,
264                bootstrap_stack_bottom_vaddr,
265                bootstrap_stack_top_vaddr,
266                NULL);
267 
268   /* Mark the remaining virtual addresses in Kernel code/data after
269      the bootstrap stack as NOT FREE */
270   create_range(FALSE,
271                bootstrap_stack_top_vaddr,
272                SOS_PAGE_ALIGN_SUP(kernel_core_top),
273                NULL);
274 
275   /* Mark virtual addresses in the first slab of the cache of caches
276      as NOT FREE */
277   SOS_ASSERT_FATAL(SOS_PAGE_ALIGN_SUP(kernel_core_top)
278                    == first_slab_of_caches_base);
279   SOS_ASSERT_FATAL(first_struct_slab_of_caches != NULL);
280   first_range_of_caches
281     = create_range(FALSE,
282                    first_slab_of_caches_base,
283                    first_slab_of_caches_base
284                    + first_slab_of_caches_nb_pages*SOS_PAGE_SIZE,
285                    first_struct_slab_of_caches);
286 
287   /* Mark virtual addresses in the first slab of the cache of ranges
288      as NOT FREE */
289   SOS_ASSERT_FATAL((first_slab_of_caches_base
290                     + first_slab_of_caches_nb_pages*SOS_PAGE_SIZE)
291                    == first_slab_of_ranges_base);
292   SOS_ASSERT_FATAL(first_struct_slab_of_ranges != NULL);
293   first_range_of_ranges
294     = create_range(FALSE,
295                    first_slab_of_ranges_base,
296                    first_slab_of_ranges_base
297                    + first_slab_of_ranges_nb_pages*SOS_PAGE_SIZE,
298                    first_struct_slab_of_ranges);
299   
300   /* Mark virtual addresses after these slabs as FREE */
301   create_range(TRUE,
302                first_slab_of_ranges_base
303                + first_slab_of_ranges_nb_pages*SOS_PAGE_SIZE,
304                SOS_KMEM_VMM_TOP,
305                NULL);
306 
307   /* Update the cache subsystem so that the artificially-created
308      caches of caches and ranges really behave like *normal* caches (ie
309      those allocated by the normal slab API) */
310   sos_kmem_cache_subsystem_setup_commit(first_struct_slab_of_caches,
311                                         first_range_of_caches,
312                                         first_struct_slab_of_ranges,
313                                         first_range_of_ranges);
314 
315   return SOS_OK;
316 }
317 
318 
319 /**
320  * Allocate a new kernel area spanning one or multiple pages.
321  *
322  * @eturn a new range structure
323  */
324 struct sos_kmem_range *sos_kmem_vmm_new_range(sos_count_t nb_pages,
325                                               sos_ui32_t  flags,
326                                               sos_vaddr_t * range_start)
327 {
328   struct sos_kmem_range *free_range, *new_range;
329 
330   if (nb_pages <= 0)
331     return NULL;
332 
333   /* Find a suitable free range to hold the size-sized object */
334   free_range = find_suitable_free_range(nb_pages);
335   if (free_range == NULL)
336     return NULL;
337 
338   /* If range has exactly the requested size, just move it to the
339      "used" list */
340   if(free_range->nb_pages == nb_pages)
341     {
342       list_delete(kmem_free_range_list, free_range);
343       kmem_used_range_list = insert_range(kmem_used_range_list,
344                                           free_range);
345       /* The new_range is exactly the free_range */
346       new_range = free_range;
347     }
348 
349   /* Otherwise the range is bigger than the requested size, split it.
350      This involves reducing its size, and allocate a new range, which
351      is going to be added to the "used" list */
352   else
353     {
354       /* free_range split in { new_range | free_range } */
355       new_range = (struct sos_kmem_range*)
356         sos_kmem_cache_alloc(kmem_range_cache,
357                              (flags & SOS_KMEM_VMM_ATOMIC)?
358                              SOS_KSLAB_ALLOC_ATOMIC:0);
359       if (! new_range)
360         return NULL;
361 
362       new_range->base_vaddr   = free_range->base_vaddr;
363       new_range->nb_pages     = nb_pages;
364       free_range->base_vaddr += nb_pages*SOS_PAGE_SIZE;
365       free_range->nb_pages   -= nb_pages;
366 
367       /* free_range is still at the same place in the list */
368       /* insert new_range in the used list */
369       kmem_used_range_list = insert_range(kmem_used_range_list,
370                                           new_range);
371     }
372 
373   /* By default, the range is not associated with any slab */
374   new_range->slab = NULL;
375 
376   /* If mapping of physical pages is needed, map them now */
377   if (flags & SOS_KMEM_VMM_MAP)
378     {
379       int i;
380       for (i = 0 ; i < nb_pages ; i ++)
381         {
382           /* Get a new physical page */
383           sos_paddr_t ppage_paddr
384             = sos_physmem_ref_physpage_new(! (flags & SOS_KMEM_VMM_ATOMIC));
385           
386           /* Map the page in kernel space */
387           if (ppage_paddr)
388             {
389               if (sos_paging_map(ppage_paddr,
390                                  new_range->base_vaddr
391                                    + i * SOS_PAGE_SIZE,
392                                  FALSE /* Not a user page */,
393                                  ((flags & SOS_KMEM_VMM_ATOMIC)?
394                                   SOS_VM_MAP_ATOMIC:0)
395                                  | SOS_VM_MAP_PROT_READ
396                                  | SOS_VM_MAP_PROT_WRITE))
397                 {
398                   /* Failed => force unallocation, see below */
399                   sos_physmem_unref_physpage(ppage_paddr);
400                   ppage_paddr = (sos_paddr_t)NULL;
401                 }
402               else
403                 {
404                   /* Success : page can be unreferenced since it is
405                      now mapped */
406                   sos_physmem_unref_physpage(ppage_paddr);
407                 }
408             }
409 
410           /* Undo the allocation if failed to allocate or map a new page */
411           if (! ppage_paddr)
412             {
413               sos_kmem_vmm_del_range(new_range);
414               return NULL;
415             }
416 
417           /* Ok, set the range owner for this page */
418           sos_physmem_set_kmem_range(ppage_paddr, new_range);
419         }
420     }
421   /* ... Otherwise: Demand Paging will do the job */
422 
423   if (range_start)
424     *range_start = new_range->base_vaddr;
425 
426   return new_range;
427 }
428 
429 
430 sos_ret_t sos_kmem_vmm_del_range(struct sos_kmem_range *range)
431 {
432   int i;
433   struct sos_kmem_range *ranges_to_free;
434   list_init(ranges_to_free);
435 
436   SOS_ASSERT_FATAL(range != NULL);
437   SOS_ASSERT_FATAL(range->slab == NULL);
438 
439   /* Remove the range from the 'USED' list now */
440   list_delete(kmem_used_range_list, range);
441 
442   /*
443    * The following do..while() loop is here to avoid an indirect
444    * recursion: if we call directly kmem_cache_free() from inside the
445    * current function, we take the risk to re-enter the current function
446    * (sos_kmem_vmm_del_range()) again, which may cause problem if it
447    * in turn calls kmem_slab again and sos_kmem_vmm_del_range again,
448    * and again and again. This may happen while freeing ranges of
449    * struct sos_kslab...
450    *
451    * To avoid this,we choose to call a special function of kmem_slab
452    * doing almost the same as sos_kmem_cache_free(), but which does
453    * NOT call us (ie sos_kmem_vmm_del_range()): instead WE add the
454    * range that is to be freed to a list, and the do..while() loop is
455    * here to process this list ! The recursion is replaced by
456    * classical iterations.
457    */
458   do
459     {
460       /* Ok, we got the range. Now, insert this range in the free list */
461       kmem_free_range_list = insert_range(kmem_free_range_list, range);
462 
463       /* Unmap the physical pages */
464       for (i = 0 ; i < range->nb_pages ; i ++)
465         {
466           /* This will work even if no page is mapped at this address */
467           sos_paging_unmap(range->base_vaddr + i*SOS_PAGE_SIZE);
468         }
469       
470       /* Eventually coalesce it with prev/next free ranges (there is
471          always a valid prev/next link since the list is circular). Note:
472          the tests below will lead to correct behaviour even if the list
473          is limited to the 'range' singleton, at least as long as the
474          range is not zero-sized */
475       /* Merge with preceding one ? */
476       if (range->prev->base_vaddr + range->prev->nb_pages*SOS_PAGE_SIZE
477           == range->base_vaddr)
478         {
479           struct sos_kmem_range *empty_range_of_ranges = NULL;
480           struct sos_kmem_range *prec_free = range->prev;
481           
482           /* Merge them */
483           prec_free->nb_pages += range->nb_pages;
484           list_delete(kmem_free_range_list, range);
485           
486           /* Mark the range as free. This may cause the slab owning
487              the range to become empty */
488           empty_range_of_ranges = 
489             sos_kmem_cache_release_struct_range(range);
490 
491           /* If this causes the slab owning the range to become empty,
492              add the range corresponding to the slab at the end of the
493              list of the ranges to be freed: it will be actually freed
494              in one of the next iterations of the do{} loop. */
495           if (empty_range_of_ranges != NULL)
496             {
497               list_delete(kmem_used_range_list, empty_range_of_ranges);
498               list_add_tail(ranges_to_free, empty_range_of_ranges);
499             }
500           
501           /* Set range to the beginning of this coelescion */
502           range = prec_free;
503         }
504       
505       /* Merge with next one ? [NO 'else' since range may be the result of
506          the merge above] */
507       if (range->base_vaddr + range->nb_pages*SOS_PAGE_SIZE
508           == range->next->base_vaddr)
509         {
510           struct sos_kmem_range *empty_range_of_ranges = NULL;
511           struct sos_kmem_range *next_range = range->next;
512           
513           /* Merge them */
514           range->nb_pages += next_range->nb_pages;
515           list_delete(kmem_free_range_list, next_range);
516           
517           /* Mark the next_range as free. This may cause the slab
518              owning the next_range to become empty */
519           empty_range_of_ranges = 
520             sos_kmem_cache_release_struct_range(next_range);
521 
522           /* If this causes the slab owning the next_range to become
523              empty, add the range corresponding to the slab at the end
524              of the list of the ranges to be freed: it will be
525              actually freed in one of the next iterations of the
526              do{} loop. */
527           if (empty_range_of_ranges != NULL)
528             {
529               list_delete(kmem_used_range_list, empty_range_of_ranges);
530               list_add_tail(ranges_to_free, empty_range_of_ranges);
531             }
532         }
533       
534 
535       /* If deleting the range(s) caused one or more range(s) to be
536          freed, get the next one to free */
537       if (list_is_empty(ranges_to_free))
538         range = NULL; /* No range left to free */
539       else
540         range = list_pop_head(ranges_to_free);
541 
542     }
543   /* Stop when there is no range left to be freed for now */
544   while (range != NULL);
545 
546   return SOS_OK;
547 }
548 
549 
550 sos_vaddr_t sos_kmem_vmm_alloc(sos_count_t nb_pages,
551                                sos_ui32_t  flags)
552 {
553   struct sos_kmem_range *range
554     = sos_kmem_vmm_new_range(nb_pages,
555                              flags,
556                              NULL);
557   if (! range)
558     return (sos_vaddr_t)NULL;
559   
560   return range->base_vaddr;
561 }
562 
563 
564 sos_ret_t sos_kmem_vmm_free(sos_vaddr_t vaddr)
565 {
566   struct sos_kmem_range *range = lookup_range(vaddr);
567 
568   /* We expect that the given address is the base address of the
569      range */
570   if (!range || (range->base_vaddr != vaddr))
571     return -SOS_EINVAL;
572 
573   /* We expect that this range is not held by any cache */
574   if (range->slab != NULL)
575     return -SOS_EBUSY;
576 
577   return sos_kmem_vmm_del_range(range);
578 }
579 
580 
581 sos_ret_t sos_kmem_vmm_set_slab(struct sos_kmem_range *range,
582                                 struct sos_kslab *slab)
583 {
584   if (! range)
585     return -SOS_EINVAL;
586 
587   range->slab = slab;
588   return SOS_OK;
589 }
590 
591 struct sos_kslab * sos_kmem_vmm_resolve_slab(sos_vaddr_t vaddr)
592 {
593   struct sos_kmem_range *range = lookup_range(vaddr);
594   if (! range)
595     return NULL;
596 
597   return range->slab;
598 }
599 
600 
601 sos_bool_t sos_kmem_vmm_is_valid_vaddr(sos_vaddr_t vaddr)
602 {
603   struct sos_kmem_range *range = lookup_range(vaddr);
604   return (range != NULL);
605 }

source navigation ] diff markup ] identifier search ] general search ]