SimpleOS

LXR

Navigation



Site hébergé par : enix

The LXR Cross Referencer for SOS

source navigation ]
diff markup ]
identifier search ]
general search ]
 
 
Article:1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] [ 6.5 ] [ 7 ] [ 7.5 ] [ 8 ] [ 9 ] [ 9.5 ]

001 /* Copyright (C) 2000 Thomas Petazzoni
002    Copyright (C) 2004 David Decotigny
003 
004    This program is free software; you can redistribute it and/or
005    modify it under the terms of the GNU General Public License
006    as published by the Free Software Foundation; either version 2
007    of the License, or (at your option) any later version.
008    
009    This program is distributed in the hope that it will be useful,
010    but WITHOUT ANY WARRANTY; without even the implied warranty of
011    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
012    GNU General Public License for more details.
013    
014    You should have received a copy of the GNU General Public License
015    along with this program; if not, write to the Free Software
016    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
017    USA. 
018 */
019 
020 #include <sos/list.h>
021 #include <sos/physmem.h>
022 #include <hwcore/paging.h>
023 #include <sos/assert.h>
024 
025 #include "kmem_vmm.h"
026 
027 /** The structure of a range of kernel-space virtual addresses */
028 struct sos_kmem_range
029 {
030   sos_vaddr_t base_vaddr;
031   sos_count_t nb_pages;
032 
033   /* The slab owning this range, or NULL */
034   struct sos_kslab *slab;
035 
036   struct sos_kmem_range *prev, *next;
037 };
038 const int sizeof_struct_sos_kmem_range = sizeof(struct sos_kmem_range);
039 
040 /** The ranges are SORTED in (strictly) ascending base addresses */
041 static struct sos_kmem_range *kmem_free_range_list, *kmem_used_range_list;
042 
043 /** The slab cache for the kmem ranges */
044 static struct sos_kslab_cache *kmem_range_cache;
045 
046 
047 
048 /** Helper function to get the closest preceding or containing
049     range for the given virtual address */
050 static struct sos_kmem_range *
051 get_closest_preceding_kmem_range(struct sos_kmem_range *the_list,
052                                  sos_vaddr_t vaddr)
053 {
054   int nb_elements;
055   struct sos_kmem_range *a_range, *ret_range;
056 
057   /* kmem_range list is kept SORTED, so we exit as soon as vaddr >= a
058      range base address */
059   ret_range = NULL;
060   list_foreach(the_list, a_range, nb_elements)
061     {
062       if (vaddr < a_range->base_vaddr)
063         return ret_range;
064       ret_range = a_range;
065     }
066 
067   /* This will always be the LAST range in the kmem area */
068   return ret_range;
069 }
070 
071 
072 /**
073  * Helper function to lookup a free range large enough to hold nb_pages
074  * pages (first fit)
075  */
076 static struct sos_kmem_range *find_suitable_free_range(sos_count_t nb_pages)
077 {
078   int nb_elements;
079   struct sos_kmem_range *r;
080 
081   list_foreach(kmem_free_range_list, r, nb_elements)
082   {
083     if (r->nb_pages >= nb_pages)
084       return r;
085   }
086 
087   return NULL;
088 }
089 
090 
091 /**
092  * Helper function to add a_range in the_list, in strictly ascending order.
093  *
094  * @return The (possibly) new head of the_list
095  */
096 static struct sos_kmem_range *insert_range(struct sos_kmem_range *the_list,
097                                            struct sos_kmem_range *a_range)
098 {
099   struct sos_kmem_range *prec_used;
100 
101   /** Look for any preceding range */
102   prec_used = get_closest_preceding_kmem_range(the_list,
103                                                a_range->base_vaddr);
104   /** insert a_range /after/ this prec_used */
105   if (prec_used != NULL)
106     list_insert_after(the_list, prec_used, a_range);
107   else /* Insert at the beginning of the list */
108     list_add_head(the_list, a_range);
109 
110   return the_list;
111 }
112 
113 
114 /**
115  * Helper function to retrieve the range owning the given vaddr, by
116  * scanning the physical memory first if vaddr is mapped in RAM
117  */
118 static struct sos_kmem_range *lookup_range(sos_vaddr_t vaddr)
119 {
120   struct sos_kmem_range *range;
121 
122   /* First: try to retrieve the physical page mapped at this address */
123   sos_paddr_t ppage_paddr = sos_paging_get_paddr(vaddr);
124   if (! ppage_paddr)
125     {
126       range = sos_physmem_get_kmem_range(ppage_paddr);
127       /* If a page is mapped at this address, it is EXPECTED that it
128          is really associated with a range */
129       SOS_ASSERT_FATAL(range != NULL);
130     }
131 
132   /* Otherwise scan the list of used ranges, looking for the range
133      owning the address */
134   else
135     {
136       range = get_closest_preceding_kmem_range(kmem_used_range_list,
137                                                vaddr);
138       /* Not found */
139       if (! range)
140         return NULL;
141     }
142 
143   return range;
144 }
145 
146 
147 /**
148  * Helper function for sos_kmem_vmm_setup() to initialize a new range
149  * that maps a given area as free or as already used.
150  * This function either succeeds or halts the whole system.
151  */
152 static struct sos_kmem_range *
153 create_range(sos_bool_t  is_free,
154              sos_vaddr_t base_vaddr,
155              sos_vaddr_t top_addr,
156              struct sos_kslab *associated_slab)
157 {
158   struct sos_kmem_range *range;
159   range = (struct sos_kmem_range*)sos_kmem_cache_alloc(kmem_range_cache,
160                                                        SOS_KSLAB_ALLOC_ATOMIC);
161   SOS_ASSERT_FATAL(range != NULL);
162 
163   range->base_vaddr = base_vaddr;
164   range->nb_pages   = (top_addr - base_vaddr) / SOS_PAGE_SIZE;
165 
166   if (is_free)
167     {
168       list_add_tail(kmem_free_range_list,
169                     range);
170     }
171   else
172     {
173       sos_vaddr_t vaddr;
174       range->slab = associated_slab;
175       list_add_tail(kmem_used_range_list,
176                     range);
177 
178       /* Ok, set the range owner for the pages in this page */
179       for (vaddr = base_vaddr ;
180            vaddr < top_addr ;
181            vaddr += SOS_PAGE_SIZE)
182       {
183         sos_paddr_t ppage_paddr = sos_paging_get_paddr(vaddr);
184         SOS_ASSERT_FATAL((void*)ppage_paddr != NULL);
185         sos_physmem_set_kmem_range(ppage_paddr, range);
186       }
187     }
188 
189   return range;
190 }
191 
192 
193 sos_ret_t sos_kmem_vmm_setup(sos_vaddr_t kernel_core_base,
194                              sos_vaddr_t kernel_core_top)
195 {
196   struct sos_kslab *first_struct_slab_of_caches,
197     *first_struct_slab_of_ranges;
198   sos_vaddr_t first_slab_of_caches_base,
199     first_slab_of_caches_nb_pages,
200     first_slab_of_ranges_base,
201     first_slab_of_ranges_nb_pages;
202   struct sos_kmem_range *first_range_of_caches,
203     *first_range_of_ranges;
204 
205   list_init(kmem_free_range_list);
206   list_init(kmem_used_range_list);
207 
208   kmem_range_cache
209     = sos_kmem_cache_setup_prepare(kernel_core_base,
210                                    kernel_core_top,
211                                    sizeof(struct sos_kmem_range),
212                                    & first_struct_slab_of_caches,
213                                    & first_slab_of_caches_base,
214                                    & first_slab_of_caches_nb_pages,
215                                    & first_struct_slab_of_ranges,
216                                    & first_slab_of_ranges_base,
217                                    & first_slab_of_ranges_nb_pages);
218   SOS_ASSERT_FATAL(kmem_range_cache != NULL);
219 
220   /* Mark virtual addresses 16kB - Video as FREE */
221   create_range(TRUE,
222                SOS_KMEM_VMM_BASE,
223                SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO_START),
224                NULL);
225   
226   /* Mark virtual addresses in Video hardware mapping as NOT FREE */
227   create_range(FALSE,
228                SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO_START),
229                SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO_END),
230                NULL);
231   
232   /* Mark virtual addresses Video - Kernel as FREE */
233   create_range(TRUE,
234                SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO_END),
235                SOS_PAGE_ALIGN_INF(kernel_core_base),
236                NULL);
237   
238   /* Mark virtual addresses in Kernel code/data as NOT FREE */
239   create_range(FALSE,
240                SOS_PAGE_ALIGN_INF(kernel_core_base),
241                SOS_PAGE_ALIGN_SUP(kernel_core_top),
242                NULL);
243 
244   /* Mark virtual addresses in the first slab of the cache of caches
245      as NOT FREE */
246   SOS_ASSERT_FATAL(SOS_PAGE_ALIGN_SUP(kernel_core_top)
247                    == first_slab_of_caches_base);
248   SOS_ASSERT_FATAL(first_struct_slab_of_caches != NULL);
249   first_range_of_caches
250     = create_range(FALSE,
251                    first_slab_of_caches_base,
252                    first_slab_of_caches_base
253                    + first_slab_of_caches_nb_pages*SOS_PAGE_SIZE,
254                    first_struct_slab_of_caches);
255 
256   /* Mark virtual addresses in the first slab of the cache of ranges
257      as NOT FREE */
258   SOS_ASSERT_FATAL((first_slab_of_caches_base
259                     + first_slab_of_caches_nb_pages*SOS_PAGE_SIZE)
260                    == first_slab_of_ranges_base);
261   SOS_ASSERT_FATAL(first_struct_slab_of_ranges != NULL);
262   first_range_of_ranges
263     = create_range(FALSE,
264                    first_slab_of_ranges_base,
265                    first_slab_of_ranges_base
266                    + first_slab_of_ranges_nb_pages*SOS_PAGE_SIZE,
267                    first_struct_slab_of_ranges);
268   
269   /* Mark virtual addresses after these slabs as FREE */
270   create_range(TRUE,
271                first_slab_of_ranges_base
272                + first_slab_of_ranges_nb_pages*SOS_PAGE_SIZE,
273                SOS_KMEM_VMM_TOP,
274                NULL);
275 
276   /* Update the cache subsystem so that the artificially-created
277      caches of caches and ranges really behave like *normal* caches (ie
278      those allocated by the normal slab API) */
279   sos_kmem_cache_setup_commit(first_struct_slab_of_caches,
280                               first_range_of_caches,
281                               first_struct_slab_of_ranges,
282                               first_range_of_ranges);
283 
284   return SOS_OK;
285 }
286 
287 
288 /**
289  * Allocate a new kernel area spanning one or multiple pages.
290  *
291  * @eturn a new range structure
292  */
293 struct sos_kmem_range *sos_kmem_vmm_new_range(sos_count_t nb_pages,
294                                               sos_ui32_t  flags,
295                                               sos_vaddr_t * range_start)
296 {
297   struct sos_kmem_range *free_range, *new_range;
298 
299   if (nb_pages <= 0)
300     return NULL;
301 
302   /* Find a suitable free range to hold the size-sized object */
303   free_range = find_suitable_free_range(nb_pages);
304   if (free_range == NULL)
305     return NULL;
306 
307   /* If range has exactly the requested size, just move it to the
308      "used" list */
309   if(free_range->nb_pages == nb_pages)
310     {
311       list_delete(kmem_free_range_list, free_range);
312       kmem_used_range_list = insert_range(kmem_used_range_list,
313                                           free_range);
314       /* The new_range is exactly the free_range */
315       new_range = free_range;
316     }
317 
318   /* Otherwise the range is bigger than the requested size, split it.
319      This involves reducing its size, and allocate a new range, which
320      is going to be added to the "used" list */
321   else
322     {
323       /* free_range split in { new_range | free_range } */
324       new_range = (struct sos_kmem_range*)
325         sos_kmem_cache_alloc(kmem_range_cache,
326                              (flags & SOS_KMEM_VMM_ATOMIC)?
327                              SOS_KSLAB_ALLOC_ATOMIC:0);
328       if (! new_range)
329         return NULL;
330 
331       new_range->base_vaddr   = free_range->base_vaddr;
332       new_range->nb_pages     = nb_pages;
333       free_range->base_vaddr += nb_pages*SOS_PAGE_SIZE;
334       free_range->nb_pages   -= nb_pages;
335 
336       /* free_range is still at the same place in the list */
337       /* insert new_range in the used list */
338       kmem_used_range_list = insert_range(kmem_used_range_list,
339                                           new_range);
340     }
341 
342   /* By default, the range is not associated with any slab */
343   new_range->slab = NULL;
344 
345   /* If mapping of physical pages is needed, map them now */
346   if (flags & SOS_KMEM_VMM_MAP)
347     {
348       int i;
349       for (i = 0 ; i < nb_pages ; i ++)
350         {
351           /* Get a new physical page */
352           sos_paddr_t ppage_paddr
353             = sos_physmem_ref_physpage_new(! (flags & SOS_KMEM_VMM_ATOMIC));
354           
355           /* Map the page in kernel space */
356           if (ppage_paddr)
357             {
358               if (sos_paging_map(ppage_paddr,
359                                  new_range->base_vaddr
360                                    + i * SOS_PAGE_SIZE,
361                                  FALSE /* Not a user page */,
362                                  ((flags & SOS_KMEM_VMM_ATOMIC)?
363                                   SOS_VM_MAP_ATOMIC:0)
364                                  | SOS_VM_MAP_PROT_READ
365                                  | SOS_VM_MAP_PROT_WRITE))
366                 {
367                   /* Failed => force unallocation, see below */
368                   sos_physmem_unref_physpage(ppage_paddr);
369                   ppage_paddr = (sos_paddr_t)NULL;
370                 }
371               else
372                 {
373                   /* Success : page can be unreferenced since it is
374                      now mapped */
375                   sos_physmem_unref_physpage(ppage_paddr);
376                 }
377             }
378 
379           /* Undo the allocation if failed to allocate or map a new page */
380           if (! ppage_paddr)
381             {
382               sos_kmem_vmm_del_range(new_range);
383               return NULL;
384             }
385 
386           /* Ok, set the range owner for this page */
387           sos_physmem_set_kmem_range(ppage_paddr, new_range);
388         }
389     }
390 
391   /* Otherwise we need a correct page fault handler to support
392      deferred mapping (aka demand paging) of ranges */
393   else
394     SOS_ASSERT_FATAL(! "No demand paging yet");
395 
396   if (range_start)
397     *range_start = new_range->base_vaddr;
398 
399   return new_range;
400 }
401 
402 
403 sos_vaddr_t sos_kmem_vmm_del_range(struct sos_kmem_range *range)
404 {
405   int i;
406   struct sos_kmem_range *ranges_to_free;
407   list_init(ranges_to_free);
408 
409   SOS_ASSERT_FATAL(range != NULL);
410   SOS_ASSERT_FATAL(range->slab == NULL);
411 
412   /* Remove the range from the 'USED' list now */
413   list_delete(kmem_used_range_list, range);
414 
415   /*
416    * The following do..while() loop is here to avoid an indirect
417    * recursion: if we call directly kmem_cache_free() from inside the
418    * current function, we take the risk to re-enter the current function
419    * (sos_kmem_vmm_del_range()) again, which may cause problem if it
420    * in turn calls kmem_slab again and sos_kmem_vmm_del_range again,
421    * and again and again. This may happen while freeing ranges of
422    * struct sos_kslab...
423    *
424    * To avoid this,we choose to call a special function of kmem_slab
425    * doing almost the same as sos_kmem_cache_free(), but which does
426    * NOT call us (ie sos_kmem_vmm_del_range()): instead WE add the
427    * range that is to be freed to a list, and the do..while() loop is
428    * here to process this list ! The recursion is replaced by
429    * classical iterations.
430    */
431   do
432     {
433       /* Ok, we got the range. Now, insert this range in the free list */
434       kmem_free_range_list = insert_range(kmem_free_range_list, range);
435 
436       /* Unmap the physical pages */
437       for (i = 0 ; i < range->nb_pages ; i ++)
438         {
439           /* This will work even if no page is mapped at this address */
440           sos_paging_unmap(range->base_vaddr + i*SOS_PAGE_SIZE);
441         }
442       
443       /* Eventually coalesce it with prev/next free ranges (there is
444          always a valid prev/next link since the list is circular). Note:
445          the tests below will lead to correct behaviour even if the list
446          is limited to the 'range' singleton, at least as long as the
447          range is not zero-sized */
448       /* Merge with preceding one ? */
449       if (range->prev->base_vaddr + range->prev->nb_pages*SOS_PAGE_SIZE
450           == range->base_vaddr)
451         {
452           struct sos_kmem_range *empty_range_of_ranges = NULL;
453           struct sos_kmem_range *prec_free = range->prev;
454           
455           /* Merge them */
456           prec_free->nb_pages += range->nb_pages;
457           list_delete(kmem_free_range_list, range);
458           
459           /* Mark the range as free. This may cause the slab owning
460              the range to become empty */
461           empty_range_of_ranges = 
462             sos_kmem_cache_release_struct_range(range);
463 
464           /* If this causes the slab owning the range to become empty,
465              add the range corresponding to the slab at the end of the
466              list of the ranges to be freed: it will be actually freed
467              in one of the next iterations of the do{} loop. */
468           if (empty_range_of_ranges != NULL)
469             {
470               list_delete(kmem_used_range_list, empty_range_of_ranges);
471               list_add_tail(ranges_to_free, empty_range_of_ranges);
472             }
473           
474           /* Set range to the beginning of this coelescion */
475           range = prec_free;
476         }
477       
478       /* Merge with next one ? [NO 'else' since range may be the result of
479          the merge above] */
480       if (range->base_vaddr + range->nb_pages*SOS_PAGE_SIZE
481           == range->next->base_vaddr)
482         {
483           struct sos_kmem_range *empty_range_of_ranges = NULL;
484           struct sos_kmem_range *next_range = range->next;
485           
486           /* Merge them */
487           range->nb_pages += next_range->nb_pages;
488           list_delete(kmem_free_range_list, next_range);
489           
490           /* Mark the next_range as free. This may cause the slab
491              owning the next_range to become empty */
492           empty_range_of_ranges = 
493             sos_kmem_cache_release_struct_range(next_range);
494 
495           /* If this causes the slab owning the next_range to become
496              empty, add the range corresponding to the slab at the end
497              of the list of the ranges to be freed: it will be
498              actually freed in one of the next iterations of the
499              do{} loop. */
500           if (empty_range_of_ranges != NULL)
501             {
502               list_delete(kmem_used_range_list, empty_range_of_ranges);
503               list_add_tail(ranges_to_free, empty_range_of_ranges);
504             }
505         }
506       
507 
508       /* If deleting the range(s) caused one or more range(s) to be
509          freed, get the next one to free */
510       if (list_is_empty(ranges_to_free))
511         range = NULL; /* No range left to free */
512       else
513         range = list_pop_head(ranges_to_free);
514 
515     }
516   /* Stop when there is no range left to be freed for now */
517   while (range != NULL);
518 
519   return SOS_OK;
520 }
521 
522 
523 sos_vaddr_t sos_kmem_vmm_alloc(sos_count_t nb_pages,
524                                sos_ui32_t  flags)
525 {
526   struct sos_kmem_range *range
527     = sos_kmem_vmm_new_range(nb_pages,
528                              flags,
529                              NULL);
530   if (! range)
531     return (sos_vaddr_t)NULL;
532   
533   return range->base_vaddr;
534 }
535 
536 
537 sos_vaddr_t sos_kmem_vmm_free(sos_vaddr_t vaddr)
538 {
539   struct sos_kmem_range *range = lookup_range(vaddr);
540 
541   /* We expect that the given address is the base address of the
542      range */
543   if (!range || (range->base_vaddr != vaddr))
544     return -SOS_EINVAL;
545 
546   /* We expect that this range is not held by any cache */
547   if (range->slab != NULL)
548     return -SOS_EBUSY;
549 
550   return sos_kmem_vmm_del_range(range);
551 }
552 
553 
554 sos_ret_t sos_kmem_vmm_set_slab(struct sos_kmem_range *range,
555                                 struct sos_kslab *slab)
556 {
557   if (! range)
558     return -SOS_EINVAL;
559 
560   range->slab = slab;
561   return SOS_OK;
562 }
563 
564 struct sos_kslab * sos_kmem_vmm_resolve_slab(sos_vaddr_t vaddr)
565 {
566   struct sos_kmem_range *range = lookup_range(vaddr);
567   if (! range)
568     return NULL;
569 
570   return range->slab;
571 }
572 

source navigation ] diff markup ] identifier search ] general search ]