SimpleOS

LXR

Navigation



Site hébergé par : enix

The LXR Cross Referencer for SOS

source navigation ]
diff markup ]
identifier search ]
general search ]
 
 
Article:1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] [ 6.5 ] [ 7 ] [ 7.5 ] [ 8 ] [ 9 ] [ 9.5 ]

Diff markup

Differences between /sos/kmem_vmm.c (Article 6) and /sos/kmem_vmm.c (Article 7.5)


001 /* Copyright (C) 2000 Thomas Petazzoni            001 /* Copyright (C) 2000 Thomas Petazzoni
002    Copyright (C) 2004 David Decotigny             002    Copyright (C) 2004 David Decotigny
003                                                   003 
004    This program is free software; you can redi    004    This program is free software; you can redistribute it and/or
005    modify it under the terms of the GNU Genera    005    modify it under the terms of the GNU General Public License
006    as published by the Free Software Foundatio    006    as published by the Free Software Foundation; either version 2
007    of the License, or (at your option) any lat    007    of the License, or (at your option) any later version.
008                                                   008    
009    This program is distributed in the hope tha    009    This program is distributed in the hope that it will be useful,
010    but WITHOUT ANY WARRANTY; without even the     010    but WITHOUT ANY WARRANTY; without even the implied warranty of
011    MERCHANTABILITY or FITNESS FOR A PARTICULAR    011    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
012    GNU General Public License for more details    012    GNU General Public License for more details.
013                                                   013    
014    You should have received a copy of the GNU     014    You should have received a copy of the GNU General Public License
015    along with this program; if not, write to t    015    along with this program; if not, write to the Free Software
016    Foundation, Inc., 59 Temple Place - Suite 3    016    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
017    USA.                                           017    USA. 
018 */                                                018 */
019                                                   019 
020 #include <sos/list.h>                             020 #include <sos/list.h>
021 #include <sos/physmem.h>                          021 #include <sos/physmem.h>
022 #include <hwcore/paging.h>                        022 #include <hwcore/paging.h>
023 #include <sos/assert.h>                           023 #include <sos/assert.h>
024                                                   024 
025 #include "kmem_vmm.h"                             025 #include "kmem_vmm.h"
026                                                   026 
027 /** The structure of a range of kernel-space v    027 /** The structure of a range of kernel-space virtual addresses */
028 struct sos_kmem_range                             028 struct sos_kmem_range
029 {                                                 029 {
030   sos_vaddr_t base_vaddr;                         030   sos_vaddr_t base_vaddr;
031   sos_count_t nb_pages;                           031   sos_count_t nb_pages;
032                                                   032 
033   /* The slab owning this range, or NULL */       033   /* The slab owning this range, or NULL */
034   struct sos_kslab *slab;                         034   struct sos_kslab *slab;
035                                                   035 
036   struct sos_kmem_range *prev, *next;             036   struct sos_kmem_range *prev, *next;
037 };                                                037 };
038 const int sizeof_struct_sos_kmem_range = sizeo    038 const int sizeof_struct_sos_kmem_range = sizeof(struct sos_kmem_range);
039                                                   039 
040 /** The ranges are SORTED in (strictly) ascend    040 /** The ranges are SORTED in (strictly) ascending base addresses */
041 static struct sos_kmem_range *kmem_free_range_    041 static struct sos_kmem_range *kmem_free_range_list, *kmem_used_range_list;
042                                                   042 
043 /** The slab cache for the kmem ranges */         043 /** The slab cache for the kmem ranges */
044 static struct sos_kslab_cache *kmem_range_cach    044 static struct sos_kslab_cache *kmem_range_cache;
045                                                   045 
046                                                   046 
047                                                   047 
048 /** Helper function to get the closest precedi    048 /** Helper function to get the closest preceding or containing
049     range for the given virtual address */        049     range for the given virtual address */
050 static struct sos_kmem_range *                    050 static struct sos_kmem_range *
051 get_closest_preceding_kmem_range(struct sos_km    051 get_closest_preceding_kmem_range(struct sos_kmem_range *the_list,
052                                  sos_vaddr_t v    052                                  sos_vaddr_t vaddr)
053 {                                                 053 {
054   int nb_elements;                                054   int nb_elements;
055   struct sos_kmem_range *a_range, *ret_range;     055   struct sos_kmem_range *a_range, *ret_range;
056                                                   056 
057   /* kmem_range list is kept SORTED, so we exi    057   /* kmem_range list is kept SORTED, so we exit as soon as vaddr >= a
058      range base address */                        058      range base address */
059   ret_range = NULL;                               059   ret_range = NULL;
060   list_foreach(the_list, a_range, nb_elements)    060   list_foreach(the_list, a_range, nb_elements)
061     {                                             061     {
062       if (vaddr < a_range->base_vaddr)            062       if (vaddr < a_range->base_vaddr)
063         return ret_range;                         063         return ret_range;
064       ret_range = a_range;                        064       ret_range = a_range;
065     }                                             065     }
066                                                   066 
067   /* This will always be the LAST range in the    067   /* This will always be the LAST range in the kmem area */
068   return ret_range;                               068   return ret_range;
069 }                                                 069 }
070                                                   070 
071                                                   071 
072 /**                                               072 /**
073  * Helper function to lookup a free range larg    073  * Helper function to lookup a free range large enough to hold nb_pages
074  * pages (first fit)                              074  * pages (first fit)
075  */                                               075  */
076 static struct sos_kmem_range *find_suitable_fr    076 static struct sos_kmem_range *find_suitable_free_range(sos_count_t nb_pages)
077 {                                                 077 {
078   int nb_elements;                                078   int nb_elements;
079   struct sos_kmem_range *r;                       079   struct sos_kmem_range *r;
080                                                   080 
081   list_foreach(kmem_free_range_list, r, nb_ele    081   list_foreach(kmem_free_range_list, r, nb_elements)
082   {                                               082   {
083     if (r->nb_pages >= nb_pages)                  083     if (r->nb_pages >= nb_pages)
084       return r;                                   084       return r;
085   }                                               085   }
086                                                   086 
087   return NULL;                                    087   return NULL;
088 }                                                 088 }
089                                                   089 
090                                                   090 
091 /**                                               091 /**
092  * Helper function to add a_range in the_list,    092  * Helper function to add a_range in the_list, in strictly ascending order.
093  *                                                093  *
094  * @return The (possibly) new head of the_list    094  * @return The (possibly) new head of the_list
095  */                                               095  */
096 static struct sos_kmem_range *insert_range(str    096 static struct sos_kmem_range *insert_range(struct sos_kmem_range *the_list,
097                                            str    097                                            struct sos_kmem_range *a_range)
098 {                                                 098 {
099   struct sos_kmem_range *prec_used;               099   struct sos_kmem_range *prec_used;
100                                                   100 
101   /** Look for any preceding range */             101   /** Look for any preceding range */
102   prec_used = get_closest_preceding_kmem_range    102   prec_used = get_closest_preceding_kmem_range(the_list,
103                                                   103                                                a_range->base_vaddr);
104   /** insert a_range /after/ this prec_used */    104   /** insert a_range /after/ this prec_used */
105   if (prec_used != NULL)                          105   if (prec_used != NULL)
106     list_insert_after(the_list, prec_used, a_r    106     list_insert_after(the_list, prec_used, a_range);
107   else /* Insert at the beginning of the list     107   else /* Insert at the beginning of the list */
108     list_add_head(the_list, a_range);             108     list_add_head(the_list, a_range);
109                                                   109 
110   return the_list;                                110   return the_list;
111 }                                                 111 }
112                                                   112 
113                                                   113 
114 /**                                               114 /**
115  * Helper function to retrieve the range ownin    115  * Helper function to retrieve the range owning the given vaddr, by
116  * scanning the physical memory first if vaddr    116  * scanning the physical memory first if vaddr is mapped in RAM
117  */                                               117  */
118 static struct sos_kmem_range *lookup_range(sos    118 static struct sos_kmem_range *lookup_range(sos_vaddr_t vaddr)
119 {                                                 119 {
120   struct sos_kmem_range *range;                   120   struct sos_kmem_range *range;
121                                                   121 
122   /* First: try to retrieve the physical page     122   /* First: try to retrieve the physical page mapped at this address */
123   sos_paddr_t ppage_paddr = SOS_PAGE_ALIGN_INF    123   sos_paddr_t ppage_paddr = SOS_PAGE_ALIGN_INF(sos_paging_get_paddr(vaddr));
                                                   >> 124 
124   if (ppage_paddr)                                125   if (ppage_paddr)
125     {                                             126     {
126       range = sos_physmem_get_kmem_range(ppage    127       range = sos_physmem_get_kmem_range(ppage_paddr);
127                                                   128 
128       /* If a page is mapped at this address,     129       /* If a page is mapped at this address, it is EXPECTED that it
129          is really associated with a range */     130          is really associated with a range */
130       SOS_ASSERT_FATAL(range != NULL);            131       SOS_ASSERT_FATAL(range != NULL);
131     }                                             132     }
132                                                   133 
133   /* Otherwise scan the list of used ranges, l    134   /* Otherwise scan the list of used ranges, looking for the range
134      owning the address */                        135      owning the address */
135   else                                            136   else
136     {                                             137     {
137       range = get_closest_preceding_kmem_range    138       range = get_closest_preceding_kmem_range(kmem_used_range_list,
138                                                   139                                                vaddr);
139       /* Not found */                             140       /* Not found */
140       if (! range)                                141       if (! range)
141         return NULL;                              142         return NULL;
142                                                   143 
143       /* vaddr not covered by this range */       144       /* vaddr not covered by this range */
144       if ( (vaddr < range->base_vaddr)            145       if ( (vaddr < range->base_vaddr)
145            || (vaddr >= (range->base_vaddr + r    146            || (vaddr >= (range->base_vaddr + range->nb_pages*SOS_PAGE_SIZE)) )
146         return NULL;                              147         return NULL;
147     }                                             148     }
148                                                   149 
149   return range;                                   150   return range;
150 }                                                 151 }
151                                                   152 
152                                                   153 
153 /**                                               154 /**
154  * Helper function for sos_kmem_vmm_setup() to    155  * Helper function for sos_kmem_vmm_setup() to initialize a new range
155  * that maps a given area as free or as alread    156  * that maps a given area as free or as already used.
156  * This function either succeeds or halts the     157  * This function either succeeds or halts the whole system.
157  */                                               158  */
158 static struct sos_kmem_range *                    159 static struct sos_kmem_range *
159 create_range(sos_bool_t  is_free,                 160 create_range(sos_bool_t  is_free,
160              sos_vaddr_t base_vaddr,              161              sos_vaddr_t base_vaddr,
161              sos_vaddr_t top_vaddr,               162              sos_vaddr_t top_vaddr,
162              struct sos_kslab *associated_slab    163              struct sos_kslab *associated_slab)
163 {                                                 164 {
164   struct sos_kmem_range *range;                   165   struct sos_kmem_range *range;
165                                                   166 
166   SOS_ASSERT_FATAL(SOS_IS_PAGE_ALIGNED(base_va    167   SOS_ASSERT_FATAL(SOS_IS_PAGE_ALIGNED(base_vaddr));
167   SOS_ASSERT_FATAL(SOS_IS_PAGE_ALIGNED(top_vad    168   SOS_ASSERT_FATAL(SOS_IS_PAGE_ALIGNED(top_vaddr));
168                                                   169 
169   if ((top_vaddr - base_vaddr) < SOS_PAGE_SIZE    170   if ((top_vaddr - base_vaddr) < SOS_PAGE_SIZE)
170     return NULL;                                  171     return NULL;
171                                                   172 
172   range = (struct sos_kmem_range*)sos_kmem_cac    173   range = (struct sos_kmem_range*)sos_kmem_cache_alloc(kmem_range_cache,
173                                                   174                                                        SOS_KSLAB_ALLOC_ATOMIC);
174   SOS_ASSERT_FATAL(range != NULL);                175   SOS_ASSERT_FATAL(range != NULL);
175                                                   176 
176   range->base_vaddr = base_vaddr;                 177   range->base_vaddr = base_vaddr;
177   range->nb_pages   = (top_vaddr - base_vaddr)    178   range->nb_pages   = (top_vaddr - base_vaddr) / SOS_PAGE_SIZE;
178                                                   179 
179   if (is_free)                                    180   if (is_free)
180     {                                             181     {
181       list_add_tail(kmem_free_range_list,         182       list_add_tail(kmem_free_range_list,
182                     range);                       183                     range);
183     }                                             184     }
184   else                                            185   else
185     {                                             186     {
186       sos_vaddr_t vaddr;                          187       sos_vaddr_t vaddr;
187       range->slab = associated_slab;              188       range->slab = associated_slab;
188       list_add_tail(kmem_used_range_list,         189       list_add_tail(kmem_used_range_list,
189                     range);                       190                     range);
190                                                   191 
191       /* Ok, set the range owner for the pages    192       /* Ok, set the range owner for the pages in this page */
192       for (vaddr = base_vaddr ;                   193       for (vaddr = base_vaddr ;
193            vaddr < top_vaddr ;                    194            vaddr < top_vaddr ;
194            vaddr += SOS_PAGE_SIZE)                195            vaddr += SOS_PAGE_SIZE)
195       {                                           196       {
196         sos_paddr_t ppage_paddr = sos_paging_g    197         sos_paddr_t ppage_paddr = sos_paging_get_paddr(vaddr);
197         SOS_ASSERT_FATAL((void*)ppage_paddr !=    198         SOS_ASSERT_FATAL((void*)ppage_paddr != NULL);
198         sos_physmem_set_kmem_range(ppage_paddr    199         sos_physmem_set_kmem_range(ppage_paddr, range);
199       }                                           200       }
200     }                                             201     }
201                                                   202 
202   return range;                                   203   return range;
203 }                                                 204 }
204                                                   205 
205                                                   206 
206 sos_ret_t                                         207 sos_ret_t
207 sos_kmem_vmm_subsystem_setup(sos_vaddr_t kerne    208 sos_kmem_vmm_subsystem_setup(sos_vaddr_t kernel_core_base,
208                              sos_vaddr_t kerne    209                              sos_vaddr_t kernel_core_top,
209                              sos_vaddr_t boots    210                              sos_vaddr_t bootstrap_stack_bottom_vaddr,
210                              sos_vaddr_t boots    211                              sos_vaddr_t bootstrap_stack_top_vaddr)
211 {                                                 212 {
212   struct sos_kslab *first_struct_slab_of_cache    213   struct sos_kslab *first_struct_slab_of_caches,
213     *first_struct_slab_of_ranges;                 214     *first_struct_slab_of_ranges;
214   sos_vaddr_t first_slab_of_caches_base,          215   sos_vaddr_t first_slab_of_caches_base,
215     first_slab_of_caches_nb_pages,                216     first_slab_of_caches_nb_pages,
216     first_slab_of_ranges_base,                    217     first_slab_of_ranges_base,
217     first_slab_of_ranges_nb_pages;                218     first_slab_of_ranges_nb_pages;
218   struct sos_kmem_range *first_range_of_caches    219   struct sos_kmem_range *first_range_of_caches,
219     *first_range_of_ranges;                       220     *first_range_of_ranges;
220                                                   221 
221   list_init(kmem_free_range_list);                222   list_init(kmem_free_range_list);
222   list_init(kmem_used_range_list);                223   list_init(kmem_used_range_list);
223                                                   224 
224   kmem_range_cache                                225   kmem_range_cache
225     = sos_kmem_cache_subsystem_setup_prepare(k    226     = sos_kmem_cache_subsystem_setup_prepare(kernel_core_base,
226                                              k    227                                              kernel_core_top,
227                                              s    228                                              sizeof(struct sos_kmem_range),
228                                              &    229                                              & first_struct_slab_of_caches,
229                                              &    230                                              & first_slab_of_caches_base,
230                                              &    231                                              & first_slab_of_caches_nb_pages,
231                                              &    232                                              & first_struct_slab_of_ranges,
232                                              &    233                                              & first_slab_of_ranges_base,
233                                              &    234                                              & first_slab_of_ranges_nb_pages);
234   SOS_ASSERT_FATAL(kmem_range_cache != NULL);     235   SOS_ASSERT_FATAL(kmem_range_cache != NULL);
235                                                   236 
236   /* Mark virtual addresses 16kB - Video as FR    237   /* Mark virtual addresses 16kB - Video as FREE */
237   create_range(TRUE,                              238   create_range(TRUE,
238                SOS_KMEM_VMM_BASE,                 239                SOS_KMEM_VMM_BASE,
239                SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO    240                SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO_START),
240                NULL);                             241                NULL);
241                                                   242   
242   /* Mark virtual addresses in Video hardware     243   /* Mark virtual addresses in Video hardware mapping as NOT FREE */
243   create_range(FALSE,                             244   create_range(FALSE,
244                SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO    245                SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO_START),
245                SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO    246                SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO_END),
246                NULL);                             247                NULL);
247                                                   248   
248   /* Mark virtual addresses Video - Kernel as     249   /* Mark virtual addresses Video - Kernel as FREE */
249   create_range(TRUE,                              250   create_range(TRUE,
250                SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO    251                SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO_END),
251                SOS_PAGE_ALIGN_INF(kernel_core_    252                SOS_PAGE_ALIGN_INF(kernel_core_base),
252                NULL);                             253                NULL);
253                                                   254   
254   /* Mark virtual addresses in Kernel code/dat    255   /* Mark virtual addresses in Kernel code/data up to the bootstrap stack
255      as NOT FREE */                               256      as NOT FREE */
256   create_range(FALSE,                             257   create_range(FALSE,
257                SOS_PAGE_ALIGN_INF(kernel_core_    258                SOS_PAGE_ALIGN_INF(kernel_core_base),
258                bootstrap_stack_bottom_vaddr,      259                bootstrap_stack_bottom_vaddr,
259                NULL);                             260                NULL);
260                                                   261 
261   /* Mark virtual addresses in the bootstrap s    262   /* Mark virtual addresses in the bootstrap stack as NOT FREE too,
262      but in another vmm region in order to be     263      but in another vmm region in order to be un-allocated later */
263   create_range(FALSE,                             264   create_range(FALSE,
264                bootstrap_stack_bottom_vaddr,      265                bootstrap_stack_bottom_vaddr,
265                bootstrap_stack_top_vaddr,         266                bootstrap_stack_top_vaddr,
266                NULL);                             267                NULL);
267                                                   268 
268   /* Mark the remaining virtual addresses in K    269   /* Mark the remaining virtual addresses in Kernel code/data after
269      the bootstrap stack as NOT FREE */           270      the bootstrap stack as NOT FREE */
270   create_range(FALSE,                             271   create_range(FALSE,
271                bootstrap_stack_top_vaddr,         272                bootstrap_stack_top_vaddr,
272                SOS_PAGE_ALIGN_SUP(kernel_core_    273                SOS_PAGE_ALIGN_SUP(kernel_core_top),
273                NULL);                             274                NULL);
274                                                   275 
275   /* Mark virtual addresses in the first slab     276   /* Mark virtual addresses in the first slab of the cache of caches
276      as NOT FREE */                               277      as NOT FREE */
277   SOS_ASSERT_FATAL(SOS_PAGE_ALIGN_SUP(kernel_c    278   SOS_ASSERT_FATAL(SOS_PAGE_ALIGN_SUP(kernel_core_top)
278                    == first_slab_of_caches_bas    279                    == first_slab_of_caches_base);
279   SOS_ASSERT_FATAL(first_struct_slab_of_caches    280   SOS_ASSERT_FATAL(first_struct_slab_of_caches != NULL);
280   first_range_of_caches                           281   first_range_of_caches
281     = create_range(FALSE,                         282     = create_range(FALSE,
282                    first_slab_of_caches_base,     283                    first_slab_of_caches_base,
283                    first_slab_of_caches_base      284                    first_slab_of_caches_base
284                    + first_slab_of_caches_nb_p    285                    + first_slab_of_caches_nb_pages*SOS_PAGE_SIZE,
285                    first_struct_slab_of_caches    286                    first_struct_slab_of_caches);
286                                                   287 
287   /* Mark virtual addresses in the first slab     288   /* Mark virtual addresses in the first slab of the cache of ranges
288      as NOT FREE */                               289      as NOT FREE */
289   SOS_ASSERT_FATAL((first_slab_of_caches_base     290   SOS_ASSERT_FATAL((first_slab_of_caches_base
290                     + first_slab_of_caches_nb_    291                     + first_slab_of_caches_nb_pages*SOS_PAGE_SIZE)
291                    == first_slab_of_ranges_bas    292                    == first_slab_of_ranges_base);
292   SOS_ASSERT_FATAL(first_struct_slab_of_ranges    293   SOS_ASSERT_FATAL(first_struct_slab_of_ranges != NULL);
293   first_range_of_ranges                           294   first_range_of_ranges
294     = create_range(FALSE,                         295     = create_range(FALSE,
295                    first_slab_of_ranges_base,     296                    first_slab_of_ranges_base,
296                    first_slab_of_ranges_base      297                    first_slab_of_ranges_base
297                    + first_slab_of_ranges_nb_p    298                    + first_slab_of_ranges_nb_pages*SOS_PAGE_SIZE,
298                    first_struct_slab_of_ranges    299                    first_struct_slab_of_ranges);
299                                                   300   
300   /* Mark virtual addresses after these slabs     301   /* Mark virtual addresses after these slabs as FREE */
301   create_range(TRUE,                              302   create_range(TRUE,
302                first_slab_of_ranges_base          303                first_slab_of_ranges_base
303                + first_slab_of_ranges_nb_pages    304                + first_slab_of_ranges_nb_pages*SOS_PAGE_SIZE,
304                SOS_KMEM_VMM_TOP,                  305                SOS_KMEM_VMM_TOP,
305                NULL);                             306                NULL);
306                                                   307 
307   /* Update the cache subsystem so that the ar    308   /* Update the cache subsystem so that the artificially-created
308      caches of caches and ranges really behave    309      caches of caches and ranges really behave like *normal* caches (ie
309      those allocated by the normal slab API) *    310      those allocated by the normal slab API) */
310   sos_kmem_cache_subsystem_setup_commit(first_    311   sos_kmem_cache_subsystem_setup_commit(first_struct_slab_of_caches,
311                                         first_    312                                         first_range_of_caches,
312                                         first_    313                                         first_struct_slab_of_ranges,
313                                         first_    314                                         first_range_of_ranges);
314                                                   315 
315   return SOS_OK;                                  316   return SOS_OK;
316 }                                                 317 }
317                                                   318 
318                                                   319 
319 /**                                               320 /**
320  * Allocate a new kernel area spanning one or     321  * Allocate a new kernel area spanning one or multiple pages.
321  *                                                322  *
322  * @eturn a new range structure                   323  * @eturn a new range structure
323  */                                               324  */
324 struct sos_kmem_range *sos_kmem_vmm_new_range(    325 struct sos_kmem_range *sos_kmem_vmm_new_range(sos_count_t nb_pages,
325                                                   326                                               sos_ui32_t  flags,
326                                                   327                                               sos_vaddr_t * range_start)
327 {                                                 328 {
328   struct sos_kmem_range *free_range, *new_rang    329   struct sos_kmem_range *free_range, *new_range;
329                                                   330 
330   if (nb_pages <= 0)                              331   if (nb_pages <= 0)
331     return NULL;                                  332     return NULL;
332                                                   333 
333   /* Find a suitable free range to hold the si    334   /* Find a suitable free range to hold the size-sized object */
334   free_range = find_suitable_free_range(nb_pag    335   free_range = find_suitable_free_range(nb_pages);
335   if (free_range == NULL)                         336   if (free_range == NULL)
336     return NULL;                                  337     return NULL;
337                                                   338 
338   /* If range has exactly the requested size,     339   /* If range has exactly the requested size, just move it to the
339      "used" list */                               340      "used" list */
340   if(free_range->nb_pages == nb_pages)            341   if(free_range->nb_pages == nb_pages)
341     {                                             342     {
342       list_delete(kmem_free_range_list, free_r    343       list_delete(kmem_free_range_list, free_range);
343       kmem_used_range_list = insert_range(kmem    344       kmem_used_range_list = insert_range(kmem_used_range_list,
344                                           free    345                                           free_range);
345       /* The new_range is exactly the free_ran    346       /* The new_range is exactly the free_range */
346       new_range = free_range;                     347       new_range = free_range;
347     }                                             348     }
348                                                   349 
349   /* Otherwise the range is bigger than the re    350   /* Otherwise the range is bigger than the requested size, split it.
350      This involves reducing its size, and allo    351      This involves reducing its size, and allocate a new range, which
351      is going to be added to the "used" list *    352      is going to be added to the "used" list */
352   else                                            353   else
353     {                                             354     {
354       /* free_range split in { new_range | fre    355       /* free_range split in { new_range | free_range } */
355       new_range = (struct sos_kmem_range*)        356       new_range = (struct sos_kmem_range*)
356         sos_kmem_cache_alloc(kmem_range_cache,    357         sos_kmem_cache_alloc(kmem_range_cache,
357                              (flags & SOS_KMEM    358                              (flags & SOS_KMEM_VMM_ATOMIC)?
358                              SOS_KSLAB_ALLOC_A    359                              SOS_KSLAB_ALLOC_ATOMIC:0);
359       if (! new_range)                            360       if (! new_range)
360         return NULL;                              361         return NULL;
361                                                   362 
362       new_range->base_vaddr   = free_range->ba    363       new_range->base_vaddr   = free_range->base_vaddr;
363       new_range->nb_pages     = nb_pages;         364       new_range->nb_pages     = nb_pages;
364       free_range->base_vaddr += nb_pages*SOS_P    365       free_range->base_vaddr += nb_pages*SOS_PAGE_SIZE;
365       free_range->nb_pages   -= nb_pages;         366       free_range->nb_pages   -= nb_pages;
366                                                   367 
367       /* free_range is still at the same place    368       /* free_range is still at the same place in the list */
368       /* insert new_range in the used list */     369       /* insert new_range in the used list */
369       kmem_used_range_list = insert_range(kmem    370       kmem_used_range_list = insert_range(kmem_used_range_list,
370                                           new_    371                                           new_range);
371     }                                             372     }
372                                                   373 
373   /* By default, the range is not associated w    374   /* By default, the range is not associated with any slab */
374   new_range->slab = NULL;                         375   new_range->slab = NULL;
375                                                   376 
376   /* If mapping of physical pages is needed, m    377   /* If mapping of physical pages is needed, map them now */
377   if (flags & SOS_KMEM_VMM_MAP)                   378   if (flags & SOS_KMEM_VMM_MAP)
378     {                                             379     {
379       int i;                                      380       int i;
380       for (i = 0 ; i < nb_pages ; i ++)           381       for (i = 0 ; i < nb_pages ; i ++)
381         {                                         382         {
382           /* Get a new physical page */           383           /* Get a new physical page */
383           sos_paddr_t ppage_paddr                 384           sos_paddr_t ppage_paddr
384             = sos_physmem_ref_physpage_new(! (    385             = sos_physmem_ref_physpage_new(! (flags & SOS_KMEM_VMM_ATOMIC));
385                                                   386           
386           /* Map the page in kernel space */      387           /* Map the page in kernel space */
387           if (ppage_paddr)                        388           if (ppage_paddr)
388             {                                     389             {
389               if (sos_paging_map(ppage_paddr,     390               if (sos_paging_map(ppage_paddr,
390                                  new_range->ba    391                                  new_range->base_vaddr
391                                    + i * SOS_P    392                                    + i * SOS_PAGE_SIZE,
392                                  FALSE /* Not     393                                  FALSE /* Not a user page */,
393                                  ((flags & SOS    394                                  ((flags & SOS_KMEM_VMM_ATOMIC)?
394                                   SOS_VM_MAP_A    395                                   SOS_VM_MAP_ATOMIC:0)
395                                  | SOS_VM_MAP_    396                                  | SOS_VM_MAP_PROT_READ
396                                  | SOS_VM_MAP_    397                                  | SOS_VM_MAP_PROT_WRITE))
397                 {                                 398                 {
398                   /* Failed => force unallocat    399                   /* Failed => force unallocation, see below */
399                   sos_physmem_unref_physpage(p    400                   sos_physmem_unref_physpage(ppage_paddr);
400                   ppage_paddr = (sos_paddr_t)N    401                   ppage_paddr = (sos_paddr_t)NULL;
401                 }                                 402                 }
402               else                                403               else
403                 {                                 404                 {
404                   /* Success : page can be unr    405                   /* Success : page can be unreferenced since it is
405                      now mapped */                406                      now mapped */
406                   sos_physmem_unref_physpage(p    407                   sos_physmem_unref_physpage(ppage_paddr);
407                 }                                 408                 }
408             }                                     409             }
409                                                   410 
410           /* Undo the allocation if failed to     411           /* Undo the allocation if failed to allocate or map a new page */
411           if (! ppage_paddr)                      412           if (! ppage_paddr)
412             {                                     413             {
413               sos_kmem_vmm_del_range(new_range    414               sos_kmem_vmm_del_range(new_range);
414               return NULL;                        415               return NULL;
415             }                                     416             }
416                                                   417 
417           /* Ok, set the range owner for this     418           /* Ok, set the range owner for this page */
418           sos_physmem_set_kmem_range(ppage_pad    419           sos_physmem_set_kmem_range(ppage_paddr, new_range);
419         }                                         420         }
420     }                                             421     }
421   /* ... Otherwise: Demand Paging will do the     422   /* ... Otherwise: Demand Paging will do the job */
422                                                   423 
423   if (range_start)                                424   if (range_start)
424     *range_start = new_range->base_vaddr;         425     *range_start = new_range->base_vaddr;
425                                                   426 
426   return new_range;                               427   return new_range;
427 }                                                 428 }
428                                                   429 
429                                                   430 
430 sos_ret_t sos_kmem_vmm_del_range(struct sos_km    431 sos_ret_t sos_kmem_vmm_del_range(struct sos_kmem_range *range)
431 {                                                 432 {
432   int i;                                          433   int i;
433   struct sos_kmem_range *ranges_to_free;          434   struct sos_kmem_range *ranges_to_free;
434   list_init(ranges_to_free);                      435   list_init(ranges_to_free);
435                                                   436 
436   SOS_ASSERT_FATAL(range != NULL);                437   SOS_ASSERT_FATAL(range != NULL);
437   SOS_ASSERT_FATAL(range->slab == NULL);          438   SOS_ASSERT_FATAL(range->slab == NULL);
438                                                   439 
439   /* Remove the range from the 'USED' list now    440   /* Remove the range from the 'USED' list now */
440   list_delete(kmem_used_range_list, range);       441   list_delete(kmem_used_range_list, range);
441                                                   442 
442   /*                                              443   /*
443    * The following do..while() loop is here to    444    * The following do..while() loop is here to avoid an indirect
444    * recursion: if we call directly kmem_cache    445    * recursion: if we call directly kmem_cache_free() from inside the
445    * current function, we take the risk to re-    446    * current function, we take the risk to re-enter the current function
446    * (sos_kmem_vmm_del_range()) again, which m    447    * (sos_kmem_vmm_del_range()) again, which may cause problem if it
447    * in turn calls kmem_slab again and sos_kme    448    * in turn calls kmem_slab again and sos_kmem_vmm_del_range again,
448    * and again and again. This may happen whil    449    * and again and again. This may happen while freeing ranges of
449    * struct sos_kslab...                          450    * struct sos_kslab...
450    *                                              451    *
451    * To avoid this,we choose to call a special    452    * To avoid this,we choose to call a special function of kmem_slab
452    * doing almost the same as sos_kmem_cache_f    453    * doing almost the same as sos_kmem_cache_free(), but which does
453    * NOT call us (ie sos_kmem_vmm_del_range())    454    * NOT call us (ie sos_kmem_vmm_del_range()): instead WE add the
454    * range that is to be freed to a list, and     455    * range that is to be freed to a list, and the do..while() loop is
455    * here to process this list ! The recursion    456    * here to process this list ! The recursion is replaced by
456    * classical iterations.                        457    * classical iterations.
457    */                                             458    */
458   do                                              459   do
459     {                                             460     {
460       /* Ok, we got the range. Now, insert thi    461       /* Ok, we got the range. Now, insert this range in the free list */
461       kmem_free_range_list = insert_range(kmem    462       kmem_free_range_list = insert_range(kmem_free_range_list, range);
462                                                   463 
463       /* Unmap the physical pages */              464       /* Unmap the physical pages */
464       for (i = 0 ; i < range->nb_pages ; i ++)    465       for (i = 0 ; i < range->nb_pages ; i ++)
465         {                                         466         {
466           /* This will work even if no page is    467           /* This will work even if no page is mapped at this address */
467           sos_paging_unmap(range->base_vaddr +    468           sos_paging_unmap(range->base_vaddr + i*SOS_PAGE_SIZE);
468         }                                         469         }
469                                                   470       
470       /* Eventually coalesce it with prev/next    471       /* Eventually coalesce it with prev/next free ranges (there is
471          always a valid prev/next link since t    472          always a valid prev/next link since the list is circular). Note:
472          the tests below will lead to correct     473          the tests below will lead to correct behaviour even if the list
473          is limited to the 'range' singleton,     474          is limited to the 'range' singleton, at least as long as the
474          range is not zero-sized */               475          range is not zero-sized */
475       /* Merge with preceding one ? */            476       /* Merge with preceding one ? */
476       if (range->prev->base_vaddr + range->pre    477       if (range->prev->base_vaddr + range->prev->nb_pages*SOS_PAGE_SIZE
477           == range->base_vaddr)                   478           == range->base_vaddr)
478         {                                         479         {
479           struct sos_kmem_range *empty_range_o    480           struct sos_kmem_range *empty_range_of_ranges = NULL;
480           struct sos_kmem_range *prec_free = r    481           struct sos_kmem_range *prec_free = range->prev;
481                                                   482           
482           /* Merge them */                        483           /* Merge them */
483           prec_free->nb_pages += range->nb_pag    484           prec_free->nb_pages += range->nb_pages;
484           list_delete(kmem_free_range_list, ra    485           list_delete(kmem_free_range_list, range);
485                                                   486           
486           /* Mark the range as free. This may     487           /* Mark the range as free. This may cause the slab owning
487              the range to become empty */         488              the range to become empty */
488           empty_range_of_ranges =                 489           empty_range_of_ranges = 
489             sos_kmem_cache_release_struct_rang    490             sos_kmem_cache_release_struct_range(range);
490                                                   491 
491           /* If this causes the slab owning th    492           /* If this causes the slab owning the range to become empty,
492              add the range corresponding to th    493              add the range corresponding to the slab at the end of the
493              list of the ranges to be freed: i    494              list of the ranges to be freed: it will be actually freed
494              in one of the next iterations of     495              in one of the next iterations of the do{} loop. */
495           if (empty_range_of_ranges != NULL)      496           if (empty_range_of_ranges != NULL)
496             {                                     497             {
497               list_delete(kmem_used_range_list    498               list_delete(kmem_used_range_list, empty_range_of_ranges);
498               list_add_tail(ranges_to_free, em    499               list_add_tail(ranges_to_free, empty_range_of_ranges);
499             }                                     500             }
500                                                   501           
501           /* Set range to the beginning of thi    502           /* Set range to the beginning of this coelescion */
502           range = prec_free;                      503           range = prec_free;
503         }                                         504         }
504                                                   505       
505       /* Merge with next one ? [NO 'else' sinc    506       /* Merge with next one ? [NO 'else' since range may be the result of
506          the merge above] */                      507          the merge above] */
507       if (range->base_vaddr + range->nb_pages*    508       if (range->base_vaddr + range->nb_pages*SOS_PAGE_SIZE
508           == range->next->base_vaddr)             509           == range->next->base_vaddr)
509         {                                         510         {
510           struct sos_kmem_range *empty_range_o    511           struct sos_kmem_range *empty_range_of_ranges = NULL;
511           struct sos_kmem_range *next_range =     512           struct sos_kmem_range *next_range = range->next;
512                                                   513           
513           /* Merge them */                        514           /* Merge them */
514           range->nb_pages += next_range->nb_pa    515           range->nb_pages += next_range->nb_pages;
515           list_delete(kmem_free_range_list, ne    516           list_delete(kmem_free_range_list, next_range);
516                                                   517           
517           /* Mark the next_range as free. This    518           /* Mark the next_range as free. This may cause the slab
518              owning the next_range to become e    519              owning the next_range to become empty */
519           empty_range_of_ranges =                 520           empty_range_of_ranges = 
520             sos_kmem_cache_release_struct_rang    521             sos_kmem_cache_release_struct_range(next_range);
521                                                   522 
522           /* If this causes the slab owning th    523           /* If this causes the slab owning the next_range to become
523              empty, add the range correspondin    524              empty, add the range corresponding to the slab at the end
524              of the list of the ranges to be f    525              of the list of the ranges to be freed: it will be
525              actually freed in one of the next    526              actually freed in one of the next iterations of the
526              do{} loop. */                        527              do{} loop. */
527           if (empty_range_of_ranges != NULL)      528           if (empty_range_of_ranges != NULL)
528             {                                     529             {
529               list_delete(kmem_used_range_list    530               list_delete(kmem_used_range_list, empty_range_of_ranges);
530               list_add_tail(ranges_to_free, em    531               list_add_tail(ranges_to_free, empty_range_of_ranges);
531             }                                     532             }
532         }                                         533         }
533                                                   534       
534                                                   535 
535       /* If deleting the range(s) caused one o    536       /* If deleting the range(s) caused one or more range(s) to be
536          freed, get the next one to free */       537          freed, get the next one to free */
537       if (list_is_empty(ranges_to_free))          538       if (list_is_empty(ranges_to_free))
538         range = NULL; /* No range left to free    539         range = NULL; /* No range left to free */
539       else                                        540       else
540         range = list_pop_head(ranges_to_free);    541         range = list_pop_head(ranges_to_free);
541                                                   542 
542     }                                             543     }
543   /* Stop when there is no range left to be fr    544   /* Stop when there is no range left to be freed for now */
544   while (range != NULL);                          545   while (range != NULL);
545                                                   546 
546   return SOS_OK;                                  547   return SOS_OK;
547 }                                                 548 }
548                                                   549 
549                                                   550 
550 sos_vaddr_t sos_kmem_vmm_alloc(sos_count_t nb_    551 sos_vaddr_t sos_kmem_vmm_alloc(sos_count_t nb_pages,
551                                sos_ui32_t  fla    552                                sos_ui32_t  flags)
552 {                                                 553 {
553   struct sos_kmem_range *range                    554   struct sos_kmem_range *range
554     = sos_kmem_vmm_new_range(nb_pages,            555     = sos_kmem_vmm_new_range(nb_pages,
555                              flags,               556                              flags,
556                              NULL);               557                              NULL);
557   if (! range)                                    558   if (! range)
558     return (sos_vaddr_t)NULL;                     559     return (sos_vaddr_t)NULL;
559                                                   560   
560   return range->base_vaddr;                       561   return range->base_vaddr;
561 }                                                 562 }
562                                                   563 
563                                                   564 
564 sos_ret_t sos_kmem_vmm_free(sos_vaddr_t vaddr)    565 sos_ret_t sos_kmem_vmm_free(sos_vaddr_t vaddr)
565 {                                                 566 {
566   struct sos_kmem_range *range = lookup_range(    567   struct sos_kmem_range *range = lookup_range(vaddr);
567                                                   568 
568   /* We expect that the given address is the b    569   /* We expect that the given address is the base address of the
569      range */                                     570      range */
570   if (!range || (range->base_vaddr != vaddr))     571   if (!range || (range->base_vaddr != vaddr))
571     return -SOS_EINVAL;                           572     return -SOS_EINVAL;
572                                                   573 
573   /* We expect that this range is not held by     574   /* We expect that this range is not held by any cache */
574   if (range->slab != NULL)                        575   if (range->slab != NULL)
575     return -SOS_EBUSY;                            576     return -SOS_EBUSY;
576                                                   577 
577   return sos_kmem_vmm_del_range(range);           578   return sos_kmem_vmm_del_range(range);
578 }                                                 579 }
579                                                   580 
580                                                   581 
581 sos_ret_t sos_kmem_vmm_set_slab(struct sos_kme    582 sos_ret_t sos_kmem_vmm_set_slab(struct sos_kmem_range *range,
582                                 struct sos_ksl    583                                 struct sos_kslab *slab)
583 {                                                 584 {
584   if (! range)                                    585   if (! range)
585     return -SOS_EINVAL;                           586     return -SOS_EINVAL;
586                                                   587 
587   range->slab = slab;                             588   range->slab = slab;
588   return SOS_OK;                                  589   return SOS_OK;
589 }                                                 590 }
590                                                   591 
591 struct sos_kslab * sos_kmem_vmm_resolve_slab(s    592 struct sos_kslab * sos_kmem_vmm_resolve_slab(sos_vaddr_t vaddr)
592 {                                                 593 {
593   struct sos_kmem_range *range = lookup_range(    594   struct sos_kmem_range *range = lookup_range(vaddr);
594   if (! range)                                    595   if (! range)
595     return NULL;                                  596     return NULL;
596                                                   597 
597   return range->slab;                             598   return range->slab;
598 }                                                 599 }
599                                                   600 
600                                                   601 
601 sos_bool_t sos_kmem_vmm_is_valid_vaddr(sos_vad    602 sos_bool_t sos_kmem_vmm_is_valid_vaddr(sos_vaddr_t vaddr)
602 {                                                 603 {
603   struct sos_kmem_range *range = lookup_range(    604   struct sos_kmem_range *range = lookup_range(vaddr);
604   return (range != NULL);                         605   return (range != NULL);
605 }                                                 606 }
                                                      

source navigation ] diff markup ] identifier search ] general search ]