SimpleOS

LXR

Navigation



Site hébergé par : enix

The LXR Cross Referencer for SOS

source navigation ]
diff markup ]
identifier search ]
general search ]
 
 
Article:1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] [ 6.5 ] [ 7 ] [ 7.5 ] [ 8 ] [ 9 ] [ 9.5 ]

Diff markup

Differences between /sos/kmem_vmm.c (Article 9.5) and /sos/kmem_vmm.c (Article 5)


001 /* Copyright (C) 2000 Thomas Petazzoni            001 /* Copyright (C) 2000 Thomas Petazzoni
002    Copyright (C) 2004 David Decotigny             002    Copyright (C) 2004 David Decotigny
003                                                   003 
004    This program is free software; you can redi    004    This program is free software; you can redistribute it and/or
005    modify it under the terms of the GNU Genera    005    modify it under the terms of the GNU General Public License
006    as published by the Free Software Foundatio    006    as published by the Free Software Foundation; either version 2
007    of the License, or (at your option) any lat    007    of the License, or (at your option) any later version.
008                                                   008    
009    This program is distributed in the hope tha    009    This program is distributed in the hope that it will be useful,
010    but WITHOUT ANY WARRANTY; without even the     010    but WITHOUT ANY WARRANTY; without even the implied warranty of
011    MERCHANTABILITY or FITNESS FOR A PARTICULAR    011    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
012    GNU General Public License for more details    012    GNU General Public License for more details.
013                                                   013    
014    You should have received a copy of the GNU     014    You should have received a copy of the GNU General Public License
015    along with this program; if not, write to t    015    along with this program; if not, write to the Free Software
016    Foundation, Inc., 59 Temple Place - Suite 3    016    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
017    USA.                                           017    USA. 
018 */                                                018 */
019                                                   019 
020 #include <sos/list.h>                             020 #include <sos/list.h>
021 #include <sos/physmem.h>                          021 #include <sos/physmem.h>
022 #include <hwcore/paging.h>                        022 #include <hwcore/paging.h>
023 #include <sos/assert.h>                           023 #include <sos/assert.h>
024                                                   024 
025 #include "kmem_vmm.h"                             025 #include "kmem_vmm.h"
026                                                   026 
027 /** The structure of a range of kernel-space v    027 /** The structure of a range of kernel-space virtual addresses */
028 struct sos_kmem_range                             028 struct sos_kmem_range
029 {                                                 029 {
030   sos_vaddr_t base_vaddr;                         030   sos_vaddr_t base_vaddr;
031   sos_count_t nb_pages;                           031   sos_count_t nb_pages;
032                                                   032 
033   /* The slab owning this range, or NULL */       033   /* The slab owning this range, or NULL */
034   struct sos_kslab *slab;                         034   struct sos_kslab *slab;
035                                                   035 
036   struct sos_kmem_range *prev, *next;             036   struct sos_kmem_range *prev, *next;
037 };                                                037 };
038 const int sizeof_struct_sos_kmem_range = sizeo    038 const int sizeof_struct_sos_kmem_range = sizeof(struct sos_kmem_range);
039                                                   039 
040 /** The ranges are SORTED in (strictly) ascend    040 /** The ranges are SORTED in (strictly) ascending base addresses */
041 static struct sos_kmem_range *kmem_free_range_    041 static struct sos_kmem_range *kmem_free_range_list, *kmem_used_range_list;
042                                                   042 
043 /** The slab cache for the kmem ranges */         043 /** The slab cache for the kmem ranges */
044 static struct sos_kslab_cache *kmem_range_cach    044 static struct sos_kslab_cache *kmem_range_cache;
045                                                   045 
046                                                   046 
047                                                   047 
048 /** Helper function to get the closest precedi    048 /** Helper function to get the closest preceding or containing
049     range for the given virtual address */        049     range for the given virtual address */
050 static struct sos_kmem_range *                    050 static struct sos_kmem_range *
051 get_closest_preceding_kmem_range(struct sos_km    051 get_closest_preceding_kmem_range(struct sos_kmem_range *the_list,
052                                  sos_vaddr_t v    052                                  sos_vaddr_t vaddr)
053 {                                                 053 {
054   int nb_elements;                                054   int nb_elements;
055   struct sos_kmem_range *a_range, *ret_range;     055   struct sos_kmem_range *a_range, *ret_range;
056                                                   056 
057   /* kmem_range list is kept SORTED, so we exi    057   /* kmem_range list is kept SORTED, so we exit as soon as vaddr >= a
058      range base address */                        058      range base address */
059   ret_range = NULL;                               059   ret_range = NULL;
060   list_foreach(the_list, a_range, nb_elements)    060   list_foreach(the_list, a_range, nb_elements)
061     {                                             061     {
062       if (vaddr < a_range->base_vaddr)            062       if (vaddr < a_range->base_vaddr)
063         return ret_range;                         063         return ret_range;
064       ret_range = a_range;                        064       ret_range = a_range;
065     }                                             065     }
066                                                   066 
067   /* This will always be the LAST range in the    067   /* This will always be the LAST range in the kmem area */
068   return ret_range;                               068   return ret_range;
069 }                                                 069 }
070                                                   070 
071                                                   071 
072 /**                                               072 /**
073  * Helper function to lookup a free range larg    073  * Helper function to lookup a free range large enough to hold nb_pages
074  * pages (first fit)                              074  * pages (first fit)
075  */                                               075  */
076 static struct sos_kmem_range *find_suitable_fr    076 static struct sos_kmem_range *find_suitable_free_range(sos_count_t nb_pages)
077 {                                                 077 {
078   int nb_elements;                                078   int nb_elements;
079   struct sos_kmem_range *r;                       079   struct sos_kmem_range *r;
080                                                   080 
081   list_foreach(kmem_free_range_list, r, nb_ele    081   list_foreach(kmem_free_range_list, r, nb_elements)
082   {                                               082   {
083     if (r->nb_pages >= nb_pages)                  083     if (r->nb_pages >= nb_pages)
084       return r;                                   084       return r;
085   }                                               085   }
086                                                   086 
087   return NULL;                                    087   return NULL;
088 }                                                 088 }
089                                                   089 
090                                                   090 
091 /**                                               091 /**
092  * Helper function to add a_range in the_list,    092  * Helper function to add a_range in the_list, in strictly ascending order.
093  *                                                093  *
094  * @return The (possibly) new head of the_list    094  * @return The (possibly) new head of the_list
095  */                                               095  */
096 static struct sos_kmem_range *insert_range(str    096 static struct sos_kmem_range *insert_range(struct sos_kmem_range *the_list,
097                                            str    097                                            struct sos_kmem_range *a_range)
098 {                                                 098 {
099   struct sos_kmem_range *prec_used;               099   struct sos_kmem_range *prec_used;
100                                                   100 
101   /** Look for any preceding range */             101   /** Look for any preceding range */
102   prec_used = get_closest_preceding_kmem_range    102   prec_used = get_closest_preceding_kmem_range(the_list,
103                                                   103                                                a_range->base_vaddr);
104   /** insert a_range /after/ this prec_used */    104   /** insert a_range /after/ this prec_used */
105   if (prec_used != NULL)                          105   if (prec_used != NULL)
106     list_insert_after(the_list, prec_used, a_r    106     list_insert_after(the_list, prec_used, a_range);
107   else /* Insert at the beginning of the list     107   else /* Insert at the beginning of the list */
108     list_add_head(the_list, a_range);             108     list_add_head(the_list, a_range);
109                                                   109 
110   return the_list;                                110   return the_list;
111 }                                                 111 }
112                                                   112 
113                                                   113 
114 /**                                               114 /**
115  * Helper function to retrieve the range ownin    115  * Helper function to retrieve the range owning the given vaddr, by
116  * scanning the physical memory first if vaddr    116  * scanning the physical memory first if vaddr is mapped in RAM
117  */                                               117  */
118 static struct sos_kmem_range *lookup_range(sos    118 static struct sos_kmem_range *lookup_range(sos_vaddr_t vaddr)
119 {                                                 119 {
120   struct sos_kmem_range *range;                   120   struct sos_kmem_range *range;
121                                                   121 
122   /* First: try to retrieve the physical page     122   /* First: try to retrieve the physical page mapped at this address */
123   sos_paddr_t ppage_paddr = SOS_PAGE_ALIGN_INF !! 123   sos_paddr_t ppage_paddr = sos_paging_get_paddr(vaddr);
124                                                !! 124   if (! ppage_paddr)
125   if (ppage_paddr)                             << 
126     {                                             125     {
127       range = sos_physmem_get_kmem_range(ppage    126       range = sos_physmem_get_kmem_range(ppage_paddr);
128                                                << 
129       /* If a page is mapped at this address,     127       /* If a page is mapped at this address, it is EXPECTED that it
130          is really associated with a range */     128          is really associated with a range */
131       SOS_ASSERT_FATAL(range != NULL);            129       SOS_ASSERT_FATAL(range != NULL);
132     }                                             130     }
133                                                   131 
134   /* Otherwise scan the list of used ranges, l    132   /* Otherwise scan the list of used ranges, looking for the range
135      owning the address */                        133      owning the address */
136   else                                            134   else
137     {                                             135     {
138       range = get_closest_preceding_kmem_range    136       range = get_closest_preceding_kmem_range(kmem_used_range_list,
139                                                   137                                                vaddr);
140       /* Not found */                             138       /* Not found */
141       if (! range)                                139       if (! range)
142         return NULL;                              140         return NULL;
143                                                << 
144       /* vaddr not covered by this range */    << 
145       if ( (vaddr < range->base_vaddr)         << 
146            || (vaddr >= (range->base_vaddr + r << 
147         return NULL;                           << 
148     }                                             141     }
149                                                   142 
150   return range;                                   143   return range;
151 }                                                 144 }
152                                                   145 
153                                                   146 
154 /**                                               147 /**
155  * Helper function for sos_kmem_vmm_setup() to    148  * Helper function for sos_kmem_vmm_setup() to initialize a new range
156  * that maps a given area as free or as alread    149  * that maps a given area as free or as already used.
157  * This function either succeeds or halts the     150  * This function either succeeds or halts the whole system.
158  */                                               151  */
159 static struct sos_kmem_range *                    152 static struct sos_kmem_range *
160 create_range(sos_bool_t  is_free,                 153 create_range(sos_bool_t  is_free,
161              sos_vaddr_t base_vaddr,              154              sos_vaddr_t base_vaddr,
162              sos_vaddr_t top_vaddr,            !! 155              sos_vaddr_t top_addr,
163              struct sos_kslab *associated_slab    156              struct sos_kslab *associated_slab)
164 {                                                 157 {
165   struct sos_kmem_range *range;                   158   struct sos_kmem_range *range;
166                                                << 
167   SOS_ASSERT_FATAL(SOS_IS_PAGE_ALIGNED(base_va << 
168   SOS_ASSERT_FATAL(SOS_IS_PAGE_ALIGNED(top_vad << 
169                                                << 
170   if ((top_vaddr - base_vaddr) < SOS_PAGE_SIZE << 
171     return NULL;                               << 
172                                                << 
173   range = (struct sos_kmem_range*)sos_kmem_cac    159   range = (struct sos_kmem_range*)sos_kmem_cache_alloc(kmem_range_cache,
174                                                   160                                                        SOS_KSLAB_ALLOC_ATOMIC);
175   SOS_ASSERT_FATAL(range != NULL);                161   SOS_ASSERT_FATAL(range != NULL);
176                                                   162 
177   range->base_vaddr = base_vaddr;                 163   range->base_vaddr = base_vaddr;
178   range->nb_pages   = (top_vaddr - base_vaddr) !! 164   range->nb_pages   = (top_addr - base_vaddr) / SOS_PAGE_SIZE;
179                                                   165 
180   if (is_free)                                    166   if (is_free)
181     {                                             167     {
182       list_add_tail(kmem_free_range_list,         168       list_add_tail(kmem_free_range_list,
183                     range);                       169                     range);
184     }                                             170     }
185   else                                            171   else
186     {                                             172     {
187       sos_vaddr_t vaddr;                          173       sos_vaddr_t vaddr;
188       range->slab = associated_slab;              174       range->slab = associated_slab;
189       list_add_tail(kmem_used_range_list,         175       list_add_tail(kmem_used_range_list,
190                     range);                       176                     range);
191                                                   177 
192       /* Ok, set the range owner for the pages    178       /* Ok, set the range owner for the pages in this page */
193       for (vaddr = base_vaddr ;                   179       for (vaddr = base_vaddr ;
194            vaddr < top_vaddr ;                 !! 180            vaddr < top_addr ;
195            vaddr += SOS_PAGE_SIZE)                181            vaddr += SOS_PAGE_SIZE)
196       {                                           182       {
197         sos_paddr_t ppage_paddr = sos_paging_g    183         sos_paddr_t ppage_paddr = sos_paging_get_paddr(vaddr);
198         SOS_ASSERT_FATAL((void*)ppage_paddr !=    184         SOS_ASSERT_FATAL((void*)ppage_paddr != NULL);
199         sos_physmem_set_kmem_range(ppage_paddr    185         sos_physmem_set_kmem_range(ppage_paddr, range);
200       }                                           186       }
201     }                                             187     }
202                                                   188 
203   return range;                                   189   return range;
204 }                                                 190 }
205                                                   191 
206                                                   192 
207 sos_ret_t                                      !! 193 sos_ret_t sos_kmem_vmm_setup(sos_vaddr_t kernel_core_base,
208 sos_kmem_vmm_subsystem_setup(sos_vaddr_t kerne !! 194                              sos_vaddr_t kernel_core_top)
209                              sos_vaddr_t kerne << 
210                              sos_vaddr_t boots << 
211                              sos_vaddr_t boots << 
212 {                                                 195 {
213   struct sos_kslab *first_struct_slab_of_cache    196   struct sos_kslab *first_struct_slab_of_caches,
214     *first_struct_slab_of_ranges;                 197     *first_struct_slab_of_ranges;
215   sos_vaddr_t first_slab_of_caches_base,          198   sos_vaddr_t first_slab_of_caches_base,
216     first_slab_of_caches_nb_pages,                199     first_slab_of_caches_nb_pages,
217     first_slab_of_ranges_base,                    200     first_slab_of_ranges_base,
218     first_slab_of_ranges_nb_pages;                201     first_slab_of_ranges_nb_pages;
219   struct sos_kmem_range *first_range_of_caches    202   struct sos_kmem_range *first_range_of_caches,
220     *first_range_of_ranges;                       203     *first_range_of_ranges;
221                                                   204 
222   list_init(kmem_free_range_list);                205   list_init(kmem_free_range_list);
223   list_init(kmem_used_range_list);                206   list_init(kmem_used_range_list);
224                                                   207 
225   kmem_range_cache                                208   kmem_range_cache
226     = sos_kmem_cache_subsystem_setup_prepare(k !! 209     = sos_kmem_cache_setup_prepare(kernel_core_base,
227                                              k !! 210                                    kernel_core_top,
228                                              s !! 211                                    sizeof(struct sos_kmem_range),
229                                              & !! 212                                    & first_struct_slab_of_caches,
230                                              & !! 213                                    & first_slab_of_caches_base,
231                                              & !! 214                                    & first_slab_of_caches_nb_pages,
232                                              & !! 215                                    & first_struct_slab_of_ranges,
233                                              & !! 216                                    & first_slab_of_ranges_base,
234                                              & !! 217                                    & first_slab_of_ranges_nb_pages);
235   SOS_ASSERT_FATAL(kmem_range_cache != NULL);     218   SOS_ASSERT_FATAL(kmem_range_cache != NULL);
236                                                   219 
237   /* Mark virtual addresses 16kB - Video as FR    220   /* Mark virtual addresses 16kB - Video as FREE */
238   create_range(TRUE,                              221   create_range(TRUE,
239                SOS_KMEM_VMM_BASE,                 222                SOS_KMEM_VMM_BASE,
240                SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO    223                SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO_START),
241                NULL);                             224                NULL);
242                                                   225   
243   /* Mark virtual addresses in Video hardware     226   /* Mark virtual addresses in Video hardware mapping as NOT FREE */
244   create_range(FALSE,                             227   create_range(FALSE,
245                SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO    228                SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO_START),
246                SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO    229                SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO_END),
247                NULL);                             230                NULL);
248                                                   231   
249   /* Mark virtual addresses Video - Kernel as     232   /* Mark virtual addresses Video - Kernel as FREE */
250   create_range(TRUE,                              233   create_range(TRUE,
251                SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO    234                SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO_END),
252                SOS_PAGE_ALIGN_INF(kernel_core_    235                SOS_PAGE_ALIGN_INF(kernel_core_base),
253                NULL);                             236                NULL);
254                                                   237   
255   /* Mark virtual addresses in Kernel code/dat !! 238   /* Mark virtual addresses in Kernel code/data as NOT FREE */
256      as NOT FREE */                            << 
257   create_range(FALSE,                             239   create_range(FALSE,
258                SOS_PAGE_ALIGN_INF(kernel_core_    240                SOS_PAGE_ALIGN_INF(kernel_core_base),
259                bootstrap_stack_bottom_vaddr,   << 
260                NULL);                          << 
261                                                << 
262   /* Mark virtual addresses in the bootstrap s << 
263      but in another vmm region in order to be  << 
264   create_range(FALSE,                          << 
265                bootstrap_stack_bottom_vaddr,   << 
266                bootstrap_stack_top_vaddr,      << 
267                NULL);                          << 
268                                                << 
269   /* Mark the remaining virtual addresses in K << 
270      the bootstrap stack as NOT FREE */        << 
271   create_range(FALSE,                          << 
272                bootstrap_stack_top_vaddr,      << 
273                SOS_PAGE_ALIGN_SUP(kernel_core_    241                SOS_PAGE_ALIGN_SUP(kernel_core_top),
274                NULL);                             242                NULL);
275                                                   243 
276   /* Mark virtual addresses in the first slab     244   /* Mark virtual addresses in the first slab of the cache of caches
277      as NOT FREE */                               245      as NOT FREE */
278   SOS_ASSERT_FATAL(SOS_PAGE_ALIGN_SUP(kernel_c    246   SOS_ASSERT_FATAL(SOS_PAGE_ALIGN_SUP(kernel_core_top)
279                    == first_slab_of_caches_bas    247                    == first_slab_of_caches_base);
280   SOS_ASSERT_FATAL(first_struct_slab_of_caches    248   SOS_ASSERT_FATAL(first_struct_slab_of_caches != NULL);
281   first_range_of_caches                           249   first_range_of_caches
282     = create_range(FALSE,                         250     = create_range(FALSE,
283                    first_slab_of_caches_base,     251                    first_slab_of_caches_base,
284                    first_slab_of_caches_base      252                    first_slab_of_caches_base
285                    + first_slab_of_caches_nb_p    253                    + first_slab_of_caches_nb_pages*SOS_PAGE_SIZE,
286                    first_struct_slab_of_caches    254                    first_struct_slab_of_caches);
287                                                   255 
288   /* Mark virtual addresses in the first slab     256   /* Mark virtual addresses in the first slab of the cache of ranges
289      as NOT FREE */                               257      as NOT FREE */
290   SOS_ASSERT_FATAL((first_slab_of_caches_base     258   SOS_ASSERT_FATAL((first_slab_of_caches_base
291                     + first_slab_of_caches_nb_    259                     + first_slab_of_caches_nb_pages*SOS_PAGE_SIZE)
292                    == first_slab_of_ranges_bas    260                    == first_slab_of_ranges_base);
293   SOS_ASSERT_FATAL(first_struct_slab_of_ranges    261   SOS_ASSERT_FATAL(first_struct_slab_of_ranges != NULL);
294   first_range_of_ranges                           262   first_range_of_ranges
295     = create_range(FALSE,                         263     = create_range(FALSE,
296                    first_slab_of_ranges_base,     264                    first_slab_of_ranges_base,
297                    first_slab_of_ranges_base      265                    first_slab_of_ranges_base
298                    + first_slab_of_ranges_nb_p    266                    + first_slab_of_ranges_nb_pages*SOS_PAGE_SIZE,
299                    first_struct_slab_of_ranges    267                    first_struct_slab_of_ranges);
300                                                   268   
301   /* Mark virtual addresses after these slabs     269   /* Mark virtual addresses after these slabs as FREE */
302   create_range(TRUE,                              270   create_range(TRUE,
303                first_slab_of_ranges_base          271                first_slab_of_ranges_base
304                + first_slab_of_ranges_nb_pages    272                + first_slab_of_ranges_nb_pages*SOS_PAGE_SIZE,
305                SOS_KMEM_VMM_TOP,                  273                SOS_KMEM_VMM_TOP,
306                NULL);                             274                NULL);
307                                                   275 
308   /* Update the cache subsystem so that the ar    276   /* Update the cache subsystem so that the artificially-created
309      caches of caches and ranges really behave    277      caches of caches and ranges really behave like *normal* caches (ie
310      those allocated by the normal slab API) *    278      those allocated by the normal slab API) */
311   sos_kmem_cache_subsystem_setup_commit(first_ !! 279   sos_kmem_cache_setup_commit(first_struct_slab_of_caches,
312                                         first_ !! 280                               first_range_of_caches,
313                                         first_ !! 281                               first_struct_slab_of_ranges,
314                                         first_ !! 282                               first_range_of_ranges);
315                                                   283 
316   return SOS_OK;                                  284   return SOS_OK;
317 }                                                 285 }
318                                                   286 
319                                                   287 
320 /**                                               288 /**
321  * Allocate a new kernel area spanning one or     289  * Allocate a new kernel area spanning one or multiple pages.
322  *                                                290  *
323  * @eturn a new range structure                   291  * @eturn a new range structure
324  */                                               292  */
325 struct sos_kmem_range *sos_kmem_vmm_new_range(    293 struct sos_kmem_range *sos_kmem_vmm_new_range(sos_count_t nb_pages,
326                                                   294                                               sos_ui32_t  flags,
327                                                   295                                               sos_vaddr_t * range_start)
328 {                                                 296 {
329   struct sos_kmem_range *free_range, *new_rang    297   struct sos_kmem_range *free_range, *new_range;
330                                                   298 
331   if (nb_pages <= 0)                              299   if (nb_pages <= 0)
332     return NULL;                                  300     return NULL;
333                                                   301 
334   /* Find a suitable free range to hold the si    302   /* Find a suitable free range to hold the size-sized object */
335   free_range = find_suitable_free_range(nb_pag    303   free_range = find_suitable_free_range(nb_pages);
336   if (free_range == NULL)                         304   if (free_range == NULL)
337     return NULL;                                  305     return NULL;
338                                                   306 
339   /* If range has exactly the requested size,     307   /* If range has exactly the requested size, just move it to the
340      "used" list */                               308      "used" list */
341   if(free_range->nb_pages == nb_pages)            309   if(free_range->nb_pages == nb_pages)
342     {                                             310     {
343       list_delete(kmem_free_range_list, free_r    311       list_delete(kmem_free_range_list, free_range);
344       kmem_used_range_list = insert_range(kmem    312       kmem_used_range_list = insert_range(kmem_used_range_list,
345                                           free    313                                           free_range);
346       /* The new_range is exactly the free_ran    314       /* The new_range is exactly the free_range */
347       new_range = free_range;                     315       new_range = free_range;
348     }                                             316     }
349                                                   317 
350   /* Otherwise the range is bigger than the re    318   /* Otherwise the range is bigger than the requested size, split it.
351      This involves reducing its size, and allo    319      This involves reducing its size, and allocate a new range, which
352      is going to be added to the "used" list *    320      is going to be added to the "used" list */
353   else                                            321   else
354     {                                             322     {
355       /* free_range split in { new_range | fre    323       /* free_range split in { new_range | free_range } */
356       new_range = (struct sos_kmem_range*)        324       new_range = (struct sos_kmem_range*)
357         sos_kmem_cache_alloc(kmem_range_cache,    325         sos_kmem_cache_alloc(kmem_range_cache,
358                              (flags & SOS_KMEM    326                              (flags & SOS_KMEM_VMM_ATOMIC)?
359                              SOS_KSLAB_ALLOC_A    327                              SOS_KSLAB_ALLOC_ATOMIC:0);
360       if (! new_range)                            328       if (! new_range)
361         return NULL;                              329         return NULL;
362                                                   330 
363       new_range->base_vaddr   = free_range->ba    331       new_range->base_vaddr   = free_range->base_vaddr;
364       new_range->nb_pages     = nb_pages;         332       new_range->nb_pages     = nb_pages;
365       free_range->base_vaddr += nb_pages*SOS_P    333       free_range->base_vaddr += nb_pages*SOS_PAGE_SIZE;
366       free_range->nb_pages   -= nb_pages;         334       free_range->nb_pages   -= nb_pages;
367                                                   335 
368       /* free_range is still at the same place    336       /* free_range is still at the same place in the list */
369       /* insert new_range in the used list */     337       /* insert new_range in the used list */
370       kmem_used_range_list = insert_range(kmem    338       kmem_used_range_list = insert_range(kmem_used_range_list,
371                                           new_    339                                           new_range);
372     }                                             340     }
373                                                   341 
374   /* By default, the range is not associated w    342   /* By default, the range is not associated with any slab */
375   new_range->slab = NULL;                         343   new_range->slab = NULL;
376                                                   344 
377   /* If mapping of physical pages is needed, m    345   /* If mapping of physical pages is needed, map them now */
378   if (flags & SOS_KMEM_VMM_MAP)                   346   if (flags & SOS_KMEM_VMM_MAP)
379     {                                             347     {
380       unsigned int i;                          !! 348       int i;
381       for (i = 0 ; i < nb_pages ; i ++)           349       for (i = 0 ; i < nb_pages ; i ++)
382         {                                         350         {
383           /* Get a new physical page */           351           /* Get a new physical page */
384           sos_paddr_t ppage_paddr                 352           sos_paddr_t ppage_paddr
385             = sos_physmem_ref_physpage_new(! (    353             = sos_physmem_ref_physpage_new(! (flags & SOS_KMEM_VMM_ATOMIC));
386                                                   354           
387           /* Map the page in kernel space */      355           /* Map the page in kernel space */
388           if (ppage_paddr)                        356           if (ppage_paddr)
389             {                                     357             {
390               if (sos_paging_map(ppage_paddr,     358               if (sos_paging_map(ppage_paddr,
391                                  new_range->ba    359                                  new_range->base_vaddr
392                                    + i * SOS_P    360                                    + i * SOS_PAGE_SIZE,
393                                  FALSE /* Not     361                                  FALSE /* Not a user page */,
394                                  ((flags & SOS    362                                  ((flags & SOS_KMEM_VMM_ATOMIC)?
395                                   SOS_VM_MAP_A    363                                   SOS_VM_MAP_ATOMIC:0)
396                                  | SOS_VM_MAP_    364                                  | SOS_VM_MAP_PROT_READ
397                                  | SOS_VM_MAP_    365                                  | SOS_VM_MAP_PROT_WRITE))
398                 {                                 366                 {
399                   /* Failed => force unallocat    367                   /* Failed => force unallocation, see below */
400                   sos_physmem_unref_physpage(p    368                   sos_physmem_unref_physpage(ppage_paddr);
401                   ppage_paddr = (sos_paddr_t)N    369                   ppage_paddr = (sos_paddr_t)NULL;
402                 }                                 370                 }
403               else                                371               else
404                 {                                 372                 {
405                   /* Success : page can be unr    373                   /* Success : page can be unreferenced since it is
406                      now mapped */                374                      now mapped */
407                   sos_physmem_unref_physpage(p    375                   sos_physmem_unref_physpage(ppage_paddr);
408                 }                                 376                 }
409             }                                     377             }
410                                                   378 
411           /* Undo the allocation if failed to     379           /* Undo the allocation if failed to allocate or map a new page */
412           if (! ppage_paddr)                      380           if (! ppage_paddr)
413             {                                     381             {
414               sos_kmem_vmm_del_range(new_range    382               sos_kmem_vmm_del_range(new_range);
415               return NULL;                        383               return NULL;
416             }                                     384             }
417                                                   385 
418           /* Ok, set the range owner for this     386           /* Ok, set the range owner for this page */
419           sos_physmem_set_kmem_range(ppage_pad    387           sos_physmem_set_kmem_range(ppage_paddr, new_range);
420         }                                         388         }
421     }                                             389     }
422   /* ... Otherwise: Demand Paging will do the  !! 390 
                                                   >> 391   /* Otherwise we need a correct page fault handler to support
                                                   >> 392      deferred mapping (aka demand paging) of ranges */
                                                   >> 393   else
                                                   >> 394     SOS_ASSERT_FATAL(! "No demand paging yet");
423                                                   395 
424   if (range_start)                                396   if (range_start)
425     *range_start = new_range->base_vaddr;         397     *range_start = new_range->base_vaddr;
426                                                   398 
427   return new_range;                               399   return new_range;
428 }                                                 400 }
429                                                   401 
430                                                   402 
431 sos_ret_t sos_kmem_vmm_del_range(struct sos_km !! 403 sos_vaddr_t sos_kmem_vmm_del_range(struct sos_kmem_range *range)
432 {                                                 404 {
                                                   >> 405   int i;
433   struct sos_kmem_range *ranges_to_free;          406   struct sos_kmem_range *ranges_to_free;
434   list_init(ranges_to_free);                      407   list_init(ranges_to_free);
435                                                   408 
436   SOS_ASSERT_FATAL(range != NULL);                409   SOS_ASSERT_FATAL(range != NULL);
437   SOS_ASSERT_FATAL(range->slab == NULL);          410   SOS_ASSERT_FATAL(range->slab == NULL);
438                                                   411 
439   /* Remove the range from the 'USED' list now    412   /* Remove the range from the 'USED' list now */
440   list_delete(kmem_used_range_list, range);       413   list_delete(kmem_used_range_list, range);
441                                                   414 
442   /*                                              415   /*
443    * The following do..while() loop is here to    416    * The following do..while() loop is here to avoid an indirect
444    * recursion: if we call directly kmem_cache    417    * recursion: if we call directly kmem_cache_free() from inside the
445    * current function, we take the risk to re-    418    * current function, we take the risk to re-enter the current function
446    * (sos_kmem_vmm_del_range()) again, which m    419    * (sos_kmem_vmm_del_range()) again, which may cause problem if it
447    * in turn calls kmem_slab again and sos_kme    420    * in turn calls kmem_slab again and sos_kmem_vmm_del_range again,
448    * and again and again. This may happen whil    421    * and again and again. This may happen while freeing ranges of
449    * struct sos_kslab...                          422    * struct sos_kslab...
450    *                                              423    *
451    * To avoid this,we choose to call a special    424    * To avoid this,we choose to call a special function of kmem_slab
452    * doing almost the same as sos_kmem_cache_f    425    * doing almost the same as sos_kmem_cache_free(), but which does
453    * NOT call us (ie sos_kmem_vmm_del_range())    426    * NOT call us (ie sos_kmem_vmm_del_range()): instead WE add the
454    * range that is to be freed to a list, and     427    * range that is to be freed to a list, and the do..while() loop is
455    * here to process this list ! The recursion    428    * here to process this list ! The recursion is replaced by
456    * classical iterations.                        429    * classical iterations.
457    */                                             430    */
458   do                                              431   do
459     {                                             432     {
460       unsigned int i;                          << 
461                                                << 
462       /* Ok, we got the range. Now, insert thi    433       /* Ok, we got the range. Now, insert this range in the free list */
463       kmem_free_range_list = insert_range(kmem    434       kmem_free_range_list = insert_range(kmem_free_range_list, range);
464                                                   435 
465       /* Unmap the physical pages */              436       /* Unmap the physical pages */
466       for (i = 0 ; i < range->nb_pages ; i ++)    437       for (i = 0 ; i < range->nb_pages ; i ++)
467         {                                         438         {
468           /* This will work even if no page is    439           /* This will work even if no page is mapped at this address */
469           sos_paging_unmap(range->base_vaddr +    440           sos_paging_unmap(range->base_vaddr + i*SOS_PAGE_SIZE);
470         }                                         441         }
471                                                   442       
472       /* Eventually coalesce it with prev/next    443       /* Eventually coalesce it with prev/next free ranges (there is
473          always a valid prev/next link since t    444          always a valid prev/next link since the list is circular). Note:
474          the tests below will lead to correct     445          the tests below will lead to correct behaviour even if the list
475          is limited to the 'range' singleton,     446          is limited to the 'range' singleton, at least as long as the
476          range is not zero-sized */               447          range is not zero-sized */
477       /* Merge with preceding one ? */            448       /* Merge with preceding one ? */
478       if (range->prev->base_vaddr + range->pre    449       if (range->prev->base_vaddr + range->prev->nb_pages*SOS_PAGE_SIZE
479           == range->base_vaddr)                   450           == range->base_vaddr)
480         {                                         451         {
481           struct sos_kmem_range *empty_range_o    452           struct sos_kmem_range *empty_range_of_ranges = NULL;
482           struct sos_kmem_range *prec_free = r    453           struct sos_kmem_range *prec_free = range->prev;
483                                                   454           
484           /* Merge them */                        455           /* Merge them */
485           prec_free->nb_pages += range->nb_pag    456           prec_free->nb_pages += range->nb_pages;
486           list_delete(kmem_free_range_list, ra    457           list_delete(kmem_free_range_list, range);
487                                                   458           
488           /* Mark the range as free. This may     459           /* Mark the range as free. This may cause the slab owning
489              the range to become empty */         460              the range to become empty */
490           empty_range_of_ranges =                 461           empty_range_of_ranges = 
491             sos_kmem_cache_release_struct_rang    462             sos_kmem_cache_release_struct_range(range);
492                                                   463 
493           /* If this causes the slab owning th    464           /* If this causes the slab owning the range to become empty,
494              add the range corresponding to th    465              add the range corresponding to the slab at the end of the
495              list of the ranges to be freed: i    466              list of the ranges to be freed: it will be actually freed
496              in one of the next iterations of     467              in one of the next iterations of the do{} loop. */
497           if (empty_range_of_ranges != NULL)      468           if (empty_range_of_ranges != NULL)
498             {                                     469             {
499               list_delete(kmem_used_range_list    470               list_delete(kmem_used_range_list, empty_range_of_ranges);
500               list_add_tail(ranges_to_free, em    471               list_add_tail(ranges_to_free, empty_range_of_ranges);
501             }                                     472             }
502                                                   473           
503           /* Set range to the beginning of thi    474           /* Set range to the beginning of this coelescion */
504           range = prec_free;                      475           range = prec_free;
505         }                                         476         }
506                                                   477       
507       /* Merge with next one ? [NO 'else' sinc    478       /* Merge with next one ? [NO 'else' since range may be the result of
508          the merge above] */                      479          the merge above] */
509       if (range->base_vaddr + range->nb_pages*    480       if (range->base_vaddr + range->nb_pages*SOS_PAGE_SIZE
510           == range->next->base_vaddr)             481           == range->next->base_vaddr)
511         {                                         482         {
512           struct sos_kmem_range *empty_range_o    483           struct sos_kmem_range *empty_range_of_ranges = NULL;
513           struct sos_kmem_range *next_range =     484           struct sos_kmem_range *next_range = range->next;
514                                                   485           
515           /* Merge them */                        486           /* Merge them */
516           range->nb_pages += next_range->nb_pa    487           range->nb_pages += next_range->nb_pages;
517           list_delete(kmem_free_range_list, ne    488           list_delete(kmem_free_range_list, next_range);
518                                                   489           
519           /* Mark the next_range as free. This    490           /* Mark the next_range as free. This may cause the slab
520              owning the next_range to become e    491              owning the next_range to become empty */
521           empty_range_of_ranges =                 492           empty_range_of_ranges = 
522             sos_kmem_cache_release_struct_rang    493             sos_kmem_cache_release_struct_range(next_range);
523                                                   494 
524           /* If this causes the slab owning th    495           /* If this causes the slab owning the next_range to become
525              empty, add the range correspondin    496              empty, add the range corresponding to the slab at the end
526              of the list of the ranges to be f    497              of the list of the ranges to be freed: it will be
527              actually freed in one of the next    498              actually freed in one of the next iterations of the
528              do{} loop. */                        499              do{} loop. */
529           if (empty_range_of_ranges != NULL)      500           if (empty_range_of_ranges != NULL)
530             {                                     501             {
531               list_delete(kmem_used_range_list    502               list_delete(kmem_used_range_list, empty_range_of_ranges);
532               list_add_tail(ranges_to_free, em    503               list_add_tail(ranges_to_free, empty_range_of_ranges);
533             }                                     504             }
534         }                                         505         }
535                                                   506       
536                                                   507 
537       /* If deleting the range(s) caused one o    508       /* If deleting the range(s) caused one or more range(s) to be
538          freed, get the next one to free */       509          freed, get the next one to free */
539       if (list_is_empty(ranges_to_free))          510       if (list_is_empty(ranges_to_free))
540         range = NULL; /* No range left to free    511         range = NULL; /* No range left to free */
541       else                                        512       else
542         range = list_pop_head(ranges_to_free);    513         range = list_pop_head(ranges_to_free);
543                                                   514 
544     }                                             515     }
545   /* Stop when there is no range left to be fr    516   /* Stop when there is no range left to be freed for now */
546   while (range != NULL);                          517   while (range != NULL);
547                                                   518 
548   return SOS_OK;                                  519   return SOS_OK;
549 }                                                 520 }
550                                                   521 
551                                                   522 
552 sos_vaddr_t sos_kmem_vmm_alloc(sos_count_t nb_    523 sos_vaddr_t sos_kmem_vmm_alloc(sos_count_t nb_pages,
553                                sos_ui32_t  fla    524                                sos_ui32_t  flags)
554 {                                                 525 {
555   struct sos_kmem_range *range                    526   struct sos_kmem_range *range
556     = sos_kmem_vmm_new_range(nb_pages,            527     = sos_kmem_vmm_new_range(nb_pages,
557                              flags,               528                              flags,
558                              NULL);               529                              NULL);
559   if (! range)                                    530   if (! range)
560     return (sos_vaddr_t)NULL;                     531     return (sos_vaddr_t)NULL;
561                                                   532   
562   return range->base_vaddr;                       533   return range->base_vaddr;
563 }                                                 534 }
564                                                   535 
565                                                   536 
566 sos_ret_t sos_kmem_vmm_free(sos_vaddr_t vaddr) !! 537 sos_vaddr_t sos_kmem_vmm_free(sos_vaddr_t vaddr)
567 {                                                 538 {
568   struct sos_kmem_range *range = lookup_range(    539   struct sos_kmem_range *range = lookup_range(vaddr);
569                                                   540 
570   /* We expect that the given address is the b    541   /* We expect that the given address is the base address of the
571      range */                                     542      range */
572   if (!range || (range->base_vaddr != vaddr))     543   if (!range || (range->base_vaddr != vaddr))
573     return -SOS_EINVAL;                           544     return -SOS_EINVAL;
574                                                   545 
575   /* We expect that this range is not held by     546   /* We expect that this range is not held by any cache */
576   if (range->slab != NULL)                        547   if (range->slab != NULL)
577     return -SOS_EBUSY;                            548     return -SOS_EBUSY;
578                                                   549 
579   return sos_kmem_vmm_del_range(range);           550   return sos_kmem_vmm_del_range(range);
580 }                                                 551 }
581                                                   552 
582                                                   553 
583 sos_ret_t sos_kmem_vmm_set_slab(struct sos_kme    554 sos_ret_t sos_kmem_vmm_set_slab(struct sos_kmem_range *range,
584                                 struct sos_ksl    555                                 struct sos_kslab *slab)
585 {                                                 556 {
586   if (! range)                                    557   if (! range)
587     return -SOS_EINVAL;                           558     return -SOS_EINVAL;
588                                                   559 
589   range->slab = slab;                             560   range->slab = slab;
590   return SOS_OK;                                  561   return SOS_OK;
591 }                                                 562 }
592                                                   563 
593 struct sos_kslab * sos_kmem_vmm_resolve_slab(s    564 struct sos_kslab * sos_kmem_vmm_resolve_slab(sos_vaddr_t vaddr)
594 {                                                 565 {
595   struct sos_kmem_range *range = lookup_range(    566   struct sos_kmem_range *range = lookup_range(vaddr);
596   if (! range)                                    567   if (! range)
597     return NULL;                                  568     return NULL;
598                                                   569 
599   return range->slab;                             570   return range->slab;
600 }                                                 571 }
601                                                   572 
602                                                << 
603 sos_bool_t sos_kmem_vmm_is_valid_vaddr(sos_vad << 
604 {                                              << 
605   struct sos_kmem_range *range = lookup_range( << 
606   return (range != NULL);                      << 
607 }                                              << 
                                                      

source navigation ] diff markup ] identifier search ] general search ]